# TSL8329M-EVB-A

# Application Note 3300MHz~4000MHz 5.0V 90mA-HG mode 5.0V 45mA-LG mode

Rev-1.1

# 2022-09-23

rfgan@tagoretech.com

Tt Tagore Tt Technology

### **1. GENERAL DESCRIPTION**

The TSL8329M is a dual-channel, integrated RF, front-end, multichip module designed for different applications. The device operates from 2.0 GHz to 4.2GHz. The TSL8329M is configured in dual channels with a cascading, two-stage, LNA and a high GaN based SPDT switch. In high gain mode, the cascaded two-stage LNA and switch offer a low noise figure of 1 dB and a high gain of 32 dB at 3.6 GHz with an output third-order intercept point (OIP3) of 35 dBm (typical) at high gain mode. In low gain mode, one stage of the two-stage LNA is in bypass, providing 13 dB of gain at a lower current of 45 mA. In powerdown mode, the LNAs are turned off and the device draws 5 mA. In transmit operation, when RF inputs are connected to a termination pin (TERM-CHA or TERM-CHB), the switch provides low insertion loss of 0.45 dB at 3.6GHz and handles long-term evolution (LTE) average power (9 dB peak to average ratio (PAR)) of 43 dBm for full lifetime operation. The device comes in an RoHS compliant, compact, 6 mm × 6 mm, 40-lead LFCSP.

TSL8329M-EVB-A is an evaluation board specially tuned for frequency range of 3300MHz~4000MHz applications. Its application in the areas of Wireless infrastructure, TDD massive multiple input & multiple output, active antenna systems, TDD-based communication systems etc.

# TSL8329M-EVB-A Board Design

#### 2. TSL8329M-EVB-A SCHEMATIC

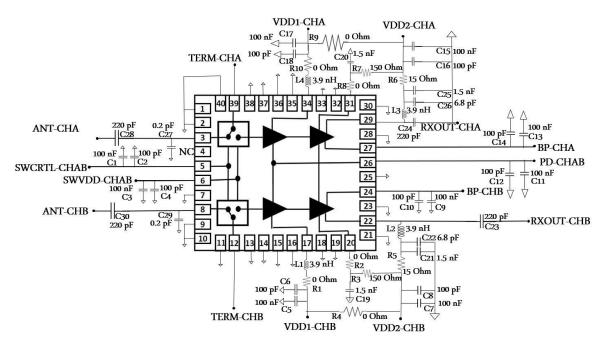



Figure 1 TSL8329M-EVB-A 3300MHz ~ 4000MHz schematic Tagore Technology Inc. Confidential

Tt Tagore Tt Technology

## 3. TSL8329M-EVB-A LAYOUT

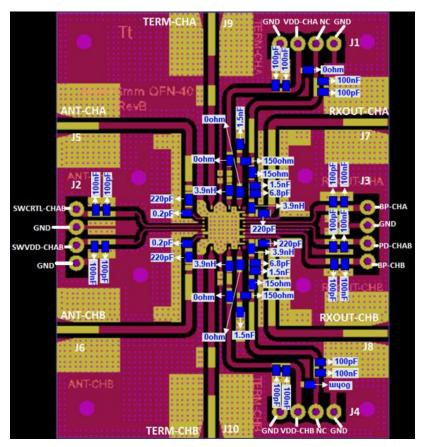



Figure 2 TSL8329M-EVB-A 3300MHz ~ 4000MHz layout

| Component ID                               | Value                                | Manufacturer | Recommended Part Number | Qty |
|--------------------------------------------|--------------------------------------|--------------|-------------------------|-----|
| R1, R2, R4, R8, R9,<br>R10                 | 0Ω                                   | Panasonic    | ERJ-2GE0R00X            | 6   |
| R3, R7                                     | 150Ω                                 | Panasonic    | ERJ-2RHD1500X           | 2   |
| R5, R6                                     | 15Ω                                  | Panasonic    | ERJ-H2RD15R0X           | 2   |
| L1, L2, L3, L4                             | 3.9nH                                | Coil craft   | 0402HP-3N9XGRW          | 4   |
| C22, C26                                   | 6.8pF                                | Murata       | GJM1555C1H6R8BB01D      | 2   |
| C19, C20, C21, C25                         | 1.5nF                                | Murata       | 04025C152JAT2A          | 4   |
| C23, C24, C28, C30                         | 220pF                                | Kemet        | C0402C221K5GACAUTO      | 4   |
| C27, C29                                   | 0.2pF                                | Murata       | GJM1555C1HR20BB01D      | 2   |
| C2, C4, C6, C8, C10,<br>C12, C14, C16, C18 | 100pF                                | AVX          | 04025A101JAT4A          | 9   |
| C1, C3, C5, C7, C9,<br>C11, C13, C15, C17  | 100nF                                | TDK          | C1005X7R1H104K050BE     | 9   |
| PCB                                        | Rogers RO4350B, 20 mils, 1 oz copper |              |                         | 1   |

# 4. TSL8329M-EVB-A BILL OF MATERIAL

Tagore Technology Inc. Confidential

Tt Tagore Tt Technology

# 5. TSL8329M-EVB-A BOARD MEASUREMENT RESULTS

### 5.1. TSL8329M-EVB-A TEST RESULTS

All the tests are carried out at room temperature.

#### 5.2. Summary

| Parameter                                                          | Test Condition                         | Typical Values | Unit |  |
|--------------------------------------------------------------------|----------------------------------------|----------------|------|--|
| Operational frequency Range                                        |                                        | 3.3-4.0G       | Hz   |  |
| Gain                                                               | HG                                     | 35-30          | dB   |  |
| Gain                                                               | LG                                     | 13-12          | dB   |  |
| Noise Figure (De embedded)                                         | HG                                     | 0.9-1.2        | dB   |  |
| Noise Figure (De-embedded)                                         | LG                                     | 0.9-1.2        |      |  |
| EVP Noise Eigure                                                   | HG                                     | 1.4-1.3        | dB   |  |
| EVB Noise Figure                                                   | LG                                     | 1.4-1.3        |      |  |
| Input Daturn Loss                                                  | HG                                     | Less than -6   | dB   |  |
| Input Return Loss                                                  | LG                                     | Less than -9   | dB   |  |
| Output Boturn Logo                                                 | HG                                     | Less than -8   | dB   |  |
| Output Return Loss                                                 | LG                                     | Less than -4   | dBm  |  |
| OP1dB                                                              | HG                                     | 18-21          | dBm  |  |
| OFICE                                                              | LG                                     | 8-10.5         | dBm  |  |
| OID2 (With 1MHz tone engine)                                       | 0dBm per tone,                         | 32-37          | dBm  |  |
| OIP3 (With 1MHz tone spacing)                                      | -2dBm per tone,                        | 17-21          | dBm  |  |
|                                                                    | HG                                     | 90             | mA   |  |
| Current, Id                                                        | LG                                     | 45             |      |  |
|                                                                    | PD                                     | 5              |      |  |
| Insertion Loss                                                     | Transmit operation<br>at 3.6 GHz       | 0.45           | dB   |  |
| Channel to Channel Isolation<br>Between RXOUT -CHA &<br>RXOUT -CHB | At 3.6GHz<br>Receive operation         | 40             | dB   |  |
| Between TERM-CHA AND<br>TERM-CHB                                   | Transmit operation                     | 55             | dB   |  |
| SWITCH ISOLATION<br>ANT-CHA to TERM-CHA and<br>ANT-CHB to TERM-CHB | Transmit operation,<br>PD-CHAB = $0 V$ | 25             | dB   |  |

Figure 3 TSL8329M-EVB-A Electrical Characteristics Summary

#### 5.3. S parameters.



Figure 4 S parameters of HG mode of TSL8329M-EVB-A

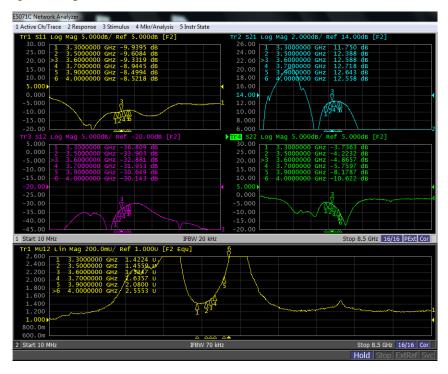



Figure 5 S parameters of LG mode of TSL8329M-EVB-A

#### 5.4. De-embedded Noise Figure.

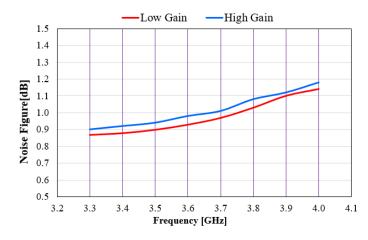



Figure 6 De-embedded NF of LG, HG mode of TSL8329M-EVB-A

#### 5.5. Large Signal Test Results.

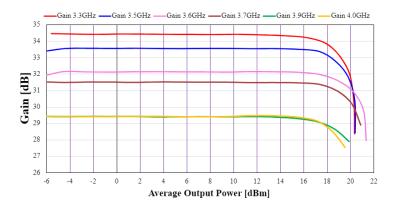



Figure 7 Gain Vs Pout of HG mode of TSL8329M-EVB-A

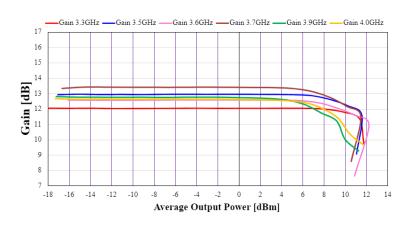



Figure 8 Gain Vs Pout of LG mode of TSL8329M-EVB-A

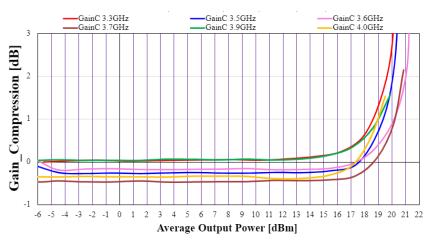



Figure 9 Gain compression Pout of HG mode of TSL8329M-EVB-A

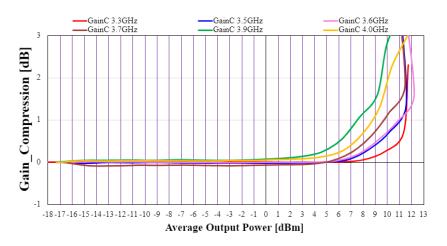



Figure 10 Gain compression Pout of LG mode of TSL8329M-EVB

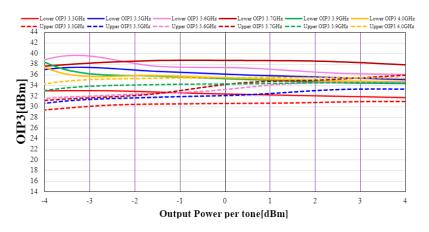



Figure 11 OIP3 Vs Pout per tone of HG mode of TSL8329M-EVB-A

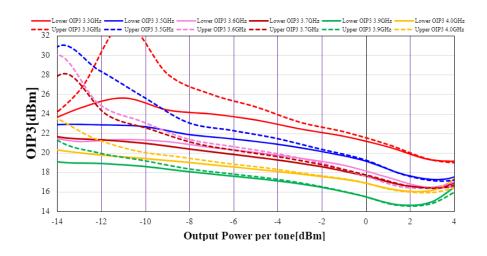



Figure 12 OIP3 Vs Pout per tone of LG mode of TSL8329M-EVB-A