TL0374J: 0.03 - 3.0 GHz GaAs Ultra Low Noise Amplifier

1.0 Features

Small signal gain @ 1800MHz: 21.5dB

• NF @ 1800MHz: 0.35dB

OP1dB @ 1800MHz: 18.5dBm
OIP3dB @ 1800MHz: 35dBm

• 5V Typical operating voltage

Operating frequency: 0.03 to 3.0GHz

2.0 Applications

- 4G/5G Infrastructure Radios
- Small Cells and Cellular Repeaters
- Phase Array Radar
- SDARS

3.0 Description

The TL0374J is a broadband, ultra-low Noise Amplifier (LNA) providing high gain and linearity. With a simple input and output match, this LNA can be tuned for different frequency bands targeting LTE (small cells and infrastructure) and any other applications requiring low noise, high gain, and linearity. For >3GHz frequency band, TL0375J can be considered.

The TL0374J is packaged in a compact, low-cost Dual Flat No Lead (DFN) 2x2x0.75mm, 8 pin plastic package.

Figure 1.1 Device Image (8 Pin 2x2x0.75mm QFN Package)

RoHS/REACH/Halogen Free Compliance

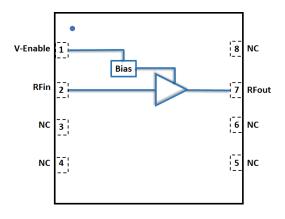


Figure 3.1 Function Block Diagram (Top View)

4.0 Ordering Information

Table 4.1 Ordering Information

Base Part Number	Package Type	Form	Qty	Reel Diameter	Reel Width	Orderable Part Number
TL0374J	8 Pin 2×2×0.75mm DFN	Tape & Reel	5000	13" (330mm)	18mm	TL0374JMTRPBF
Tuned Evaluation Board, 1800 - 2100MHz						TL0374J-EVB-A
Tuned Evaluation Board, 2500 - 2700MHz						TL0374J-EVB-B
Tuned Evaluation Board, 30 - 1000MHz						TL0374J-EVB-C
Tuned Evaluation Board, 30-2600MHz [3.3V 30mA]						TL0374J-EVB-D1
Tuned Evaluation Board, 30-2600MHz [5V 55mA]					TL0374J-EVB-D2	
Tuned Evaluation Board, 1000-2000MHz						TL0374J-EVB-E

5.0 Pin Description

Table 5.1 Pin Definition

Pin Number	Pin Name	Description			
3-6, 8	NC	No internal connection, can be connected to ground			
1	Venable	Venable along with series resistor, sets the Idq. Venable <0.2V disables the device			
2	RFIN	RF Input. DC blocking cap required			
7	RF _{OUT} /V _{dd}	RF Output. Vdd supplied through an external choke inductor			
Package Base	Paddle/Slug	DC and RF Ground. Also provides thermal relief. Multiple vias are recommended			

Note: [1] The backside ground slug of the device must be grounded directly to the ground plane through multiple vias to ensure proper operation. Adequate heat sinking required.

6.0 Absolute Maximum Rating

Table 6.1 Absolute Maximum Rating @TA=+25°C Unless Otherwise Specified

Parameter	Symbol	Value	Unit			
Electrical Ratings						
Supply voltage, Venable	V _{dd}	+6	V			
Drain current	I _{DQ}	70	mA			
RF input power CW	RFIN	23	dBm			
Storage Temperature Range	T _{st}	-55 to +150	°C			
Operating Temperature Range	Top	-40 to +105	°C			
Maximum Junction Temperature	TJ	170	°C			
Thermal Ra	ntings					
Thermal Resistance (junction-to-case) – Bottom side	R _{θJC}	15.0	°C/W			
Soldering Temperature	T _{SOLD}	260	°C			
ESD Rati	ngs					
Human Body Model (HBM)	Level 1B	500 to <1000	V			
Charged Device Model (CDM)	Level C	≥1000	V			
Moisture Rating						
Moisture Sensitivity Level	MSL	1	-			

Attention:

Maximum ratings are absolute ratings. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding one or a combination of the absolute maximum ratings may cause permanent and irreversible damage to the device and/or to surrounding circuit.

7.0 Recommended DC Operating Conditions

Table 7.1 Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Drain Voltage	V_{DD}		+5.0		V
Venable Voltage	V _{enable}		+5.0		V
Drain Bias Current	IDQ, Set by external resistor	45	60		mΑ
Venable Bias Current	bias		3.0		mΑ
Operating Temperature Range		-40	+25	+105	°C

8.0 Switching Time

Table 8.1 Switching time.

Parameter	Test Condition	Typical	Unit
Switching Rise Time	10/90% of the RF value	300	nsec
Switching Fall Time	10/90% of the RF value	350	nsec

9.0 RF Electrical Specifications

Table 9.1 EVB A 1800-2100MHz

Venable= 5V, Idd=60mA, Vdd=5V, @T_A=+25°C Unless Otherwise Specified

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	Across the band		20-22		dB
Noise Figure	Across the band		0.3-0.4		dB
EVB Noise Figure	Across the band		0.4-0.5		dB
Input Return Loss	Across the band		17-27		dB
Output Return Loss	Across the band		9-10		dB
OP1dB	Across the band		18.3-19.5		dBm
OIP3	Across the band, 0dBm per tone, Tone Spacing 1MHz		35-37.3		dBm

Table 9.2 EVB B 2500-2700MHz

Venable= 5V, Idd=60mA, Vdd=5V, @T_A=+25°C Unless Otherwise Specified

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	Across Band		18.5-19.2		dB
Noise Figure	Across Band		0.3-0.4		dB
EVB Noise Figure	Across Band		0.4-0.5		dB
Input Return Loss	Across Band		27-33		dB
Output Return Loss	Across Band		9-9.3		dB
OP1dB	Across Band		18.4-19.6		dBm
OIP3	Across Band, 0dBm per tone, Tone Spacing 1MHz		41-43		dBm

Table 9.3 EVB C 30-1000MHz

Venable= 3.3V, Idd=30mA, Vdd=3.3V, @TA=+25°C Unless Otherwise Specified

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	Across the band		21.3-25.6		dB
Noise Figure	Across the band		0.5-0.6		dB
EVB Noise Figure	Across the band		0.5-0.7		dB
Input Return Loss	Across the band		12.5-26		dB
Output Return Loss	Across the band		7.4-19.3		dB
OP1dB	Across the band		14.6-15.2		dBm
OIP3	Across the band, 0dBm per tone, Tone Spacing 1MHz		27.5-29.3		dBm

Table 9.4 EVB D1 30-2600MHz

Venable= 3.3V, Idd=30mA, Vdd=3.3V, @T_A=+25°C Unless Otherwise Specified

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	Across the band		13-20.3		dB
Noise Figure	Across the band		0.4-0.6		dB
EVB Noise Figure	Across the band		0.4-0.7		dB
Input Return Loss	Across the band		8.3-16.0		dB
Output Return Loss	Across the band		7.4-19.3		dB
OP1dB	Across the band		12.1-14.7		dBm
OIP3	Across the band, 0dBm per tone, Tone Spacing 1MHz		22.6-29.1		dBm

Table 9.5 EVB D2 30-2600MHz

Venable= 5V, Idd=55mA, Vdd=5V, @TA=+25°C Unless Otherwise Specified

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	Across the band		13.5-21.9		dB
Noise Figure	Across the band		0.5-0.7		dB
EVB Noise Figure	Across the band		0.5-0.8		dB
Input Return Loss	Across the band		8.9-23.5		dB
Output Return Loss	Across the band		6.4-19.6		dB
OP1dB	Across the band		13.8-17.8		dBm
OIP3	Across the band, 0dBm per tone, Tone Spacing 1MHz		27.2-33.0		dBm

Table 9.6 EVB E 1000-2000MHz

Venable= 3.3V, Idd=50mA, Vdd=3.3V, @TA=+25°C Unless Otherwise Specified

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	Across the band		18.5-23.6		dB
Noise Figure	Across the band		0.4-0.5		dB
EVB Noise Figure	Across the band		0.5-0.6		dB
Input Return Loss	Across the band		5.1-21.5		dB
Output Return Loss	Across the band		5.2-6.7		dB
OP1dB	Across the band		15.8-16.8		dBm
OIP3	Across the band, 0dBm/ tone, Tone Spacing 1MHz		30.7-33.4		dBm

10.0 Evaluation Board Details

10.1 EVB A 1.8-2.1GHz

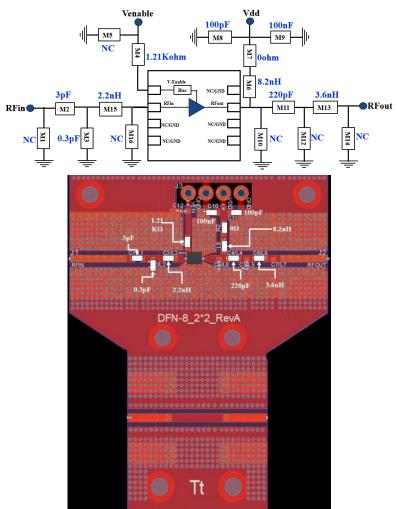


Figure 10.1 Schematic and EVB layout of the 1800-2100MHz EVB-A

Table 10.1 BOM of the 1800-2100MHz EVB A

Component ID	Value	Manufacturer	Recommended Part Number		
M2	3.0pF	Murata	GJM1555C1H3R0BB01		
M3	0.3pF	Murata	GJM1555C1HR30BB01		
M15	2.2nH	Coil craft /Wurth Elektronik	0402HP-2N2XJE /744765022A		
M4	1.21ΚΩ	Panasonic	ERJ-2RKF1211X		
M8	100pF	AVX	04025A101JAT4A		
M9	100nF	TDK	C1005X7R1H104K050BE		
M7	Ω0	Panasonic	ERJ-2GE0R00X		
M6	8.2nH	Coil craft /Wurth Elektronik	0402HP-8N2XGE /744765082GA		
M11	220pF	Kemet	C0402C221K5GACAUTO		
M13	3.6nH	Coil Craft /Wurth Elektronik	0402HP-3N6XGE /744765036A		
PCB	Rogers RO4350B, 20 mils, 1 oz copper				

10.2 EVB B 2.5-2.7GHz

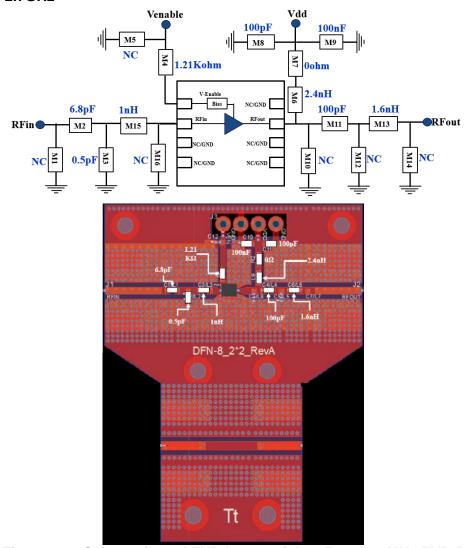


Figure 10.2 Schematic and EVB layout of the 2500-2700MHz EVB-B

Table 10.2 BOM of the 2500-2700MHz EVB B

Table 10.2 BOM Of the 2500-27 COM IZ EVB B						
Component ID	Value	Manufacturer	Recommended Part Number			
M2	6.8pF	Murata	GJM1555C1H6R8BB01			
M3	0.5pF	Murata GJM1555C1HR50BB01				
M15	1nH	Coil craft 0402HP-1N0XJE				
M4	1.21ΚΩ	Panasonic	ERJ-2RKF1211X			
M8	100pF	AVX	04025A101JAT4A			
M9	100nF	TDK	C1005X7R1H104K050BE			
M7	0Ω	Panasonic	ERJ-2GE0R00X			
M6	2.4nH	Coil craft	0402HP-2N4XGE			
M11	100pF	AVX	04025A101JAT4A			
M13	1.6nH	Coil craft	0603HC-1N6XGLW			
PCB	Rogers RO4350B, 20 mils, 1 oz copper					

10.3 EVB C 30-1000MHz

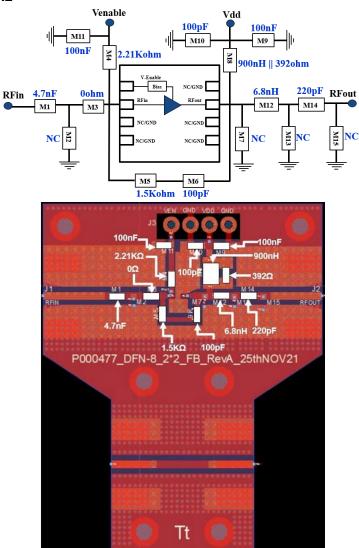


Figure 10.3 Schematic and EVB layout of the 30-1000MHz EVB-C

Table 10.3 BOM of the 30-1000MHz EVB C

Component ID	Value	Manufacturer Recommended Part Numl		
M1	4.7nF, 50V	Murata	GRM1885C1H472JA01D	
M3	Ω0	Panasonic ERJ-2GE0R00X		
M4	2.21ΚΩ	Panasonic	ERJ-2RKF2211X	
M5	1.5ΚΩ	Panasonic	ERJ-2RKF1501X	
M6, M10	100pF	AVX	04025A101JAT4A	
M8	900nH	Coil craft	1008AF-901XJLC	
M8	392Ω	Panasonic	ERJ-UP3F3920V	
M9, M11	100nF	TDK	C1005X7R1H104K050BE	
M12	6.8nH	Coil craft	0402HP-6N8XJRW	
M14	220pF	Kemet	C0402C221K5GACAUTO	
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

10.4 EVB D1 30-2600MHz

Figure 10.4 Schematic and EVB layout of the 30-2600MHz EVB-D1

Table 10.4 BOM of the 30-2600MHz EVB D1

Component ID	Value	Manufacturer	Recommended Part Number	
M1, M14	Ω0	Panasonic	ERJ-2GE0R00X	
M2	0.6pF	Murata	GJM1555C1HR60BB01D	
M3, M12	4.7nF, 50V	Murata GRM1885C1H472JA01E		
M4	2.21ΚΩ	Panasonic	ERJ-2RKF2211X	
M5	750Ω	KOA Speer	RK73H1ERTTP7500F	
M6, M10	100pF	AVX	04025A101JAT4A	
M8	1µH	Coil craft	PFL2512-102MEC	
M8	51Ω	R0HM Semiconductor	ESR03EZPJ510	
M9, M11	100nF	TDK	C1005X7R1H104K050BE	
M15	1.5pF	Murata GJM1555C1H1R5BB01J		
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

10.5 EVB D2 30-2600MHz

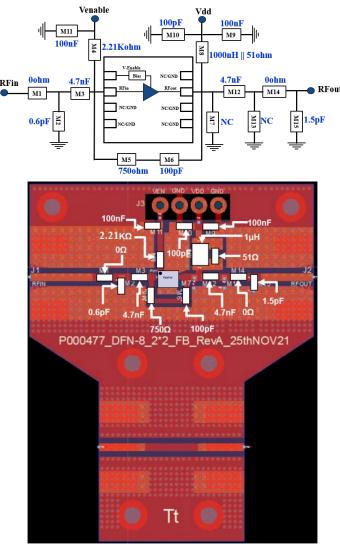


Figure 10.5 Schematic and EVB layout of the 30-2600MHz EVB-D2

Table 10.5 BOM of the 30-2600MHz EVB D2

Component ID	Value	Manufacturer	Recommended Part Number	
M1, M14	Ω0	Panasonic	ERJ-2GE0R00X	
M2	0.6pF	Murata GJM1555C1HR60BB0		
M3, M12	4.7nF, 50V	Murata	GRM1885C1H472JA01D	
M4	2.21ΚΩ	Panasonic	ERJ-2RKF2211X	
M5	750Ω	KOA Speer	RK73H1ERTTP7500F	
M6, M10	100pF	AVX	04025A101JAT4A	
M8	1µH	Coil craft	PFL2512-102MEC	
M8	51Ω	R0HM Semiconductor	ESR03EZPJ510	
M9, M11	100nF	TDK	C1005X7R1H104K050BE	
M15	1.5pF	Murata	GJM1555C1H1R5BB01J	
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

10.6 EVB E 1000-2000MHz

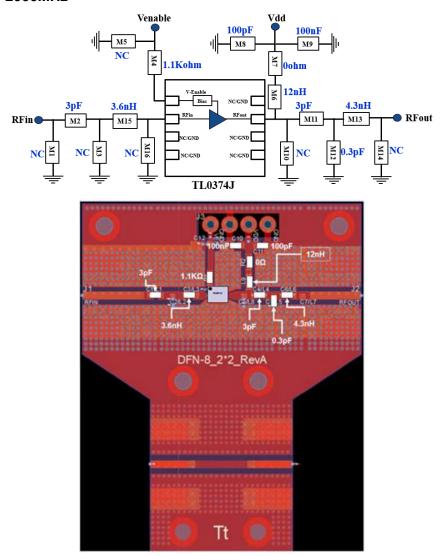


Figure 10.6 Schematic and EVB layout of the 1000-2000MHz EVB-E

Table 10.6 BOM of the 1000-2000MHz EVB E

Table 10.0 Bolli of the 1000-2000lift LVB L						
Component ID	Value	Manufacturer	Recommended Part Number			
M2, M11	3.0pF	Murata	GJM1555C1H3R0BB01			
M12	0.3pF	Murata	GJM1555C1HR30BB01			
M8	100pF	AVX	04025A101JAT4A			
M9	100nF	TDK	C1005X7R1H104K050BE			
M7	Ω0	Panasonic	ERJ-2GE0R00X			
M6	12nH	Coil craft	0402HP-12NXE			
M15	3.6nH	Coil craft/Wurth Electronics	0402HP-3N6XGE/744916036			
M14	1.1 ΚΩ	Panasonic	ERJ-2RKF1101X			
M13	4.3 nH	Coil craft 0402HP-4N3XGE				
PCB	Rogers RO4350B, 20 mils, 1 oz copper					

11.0 Typical Characteristics

11.1 2500 - 2700MHz tuned EVB (Vdd=5V, I_{DQ}=60mA), -40°C, 25°C, 85°C, 105 °C, Narrowband

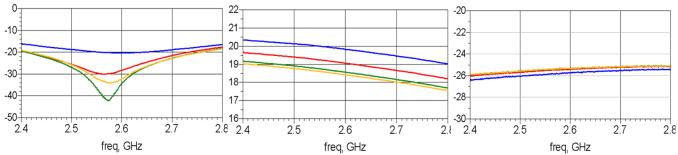


Figure 11.1.1: S11(IRL) vs Freq

Figure 11.1.2: S21(Gain) vs Freq Figure 11.1.3: S12(Rev Iso) vs Freq

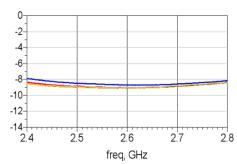


Figure 11.1.4: S22(ORL) vs Freq

11.2 2500 - 2700MHz tuned EVB (Vdd=5V, I_{DQ}=60mA), -40°C, 25°C, 85°C, 105 °C, Broadband

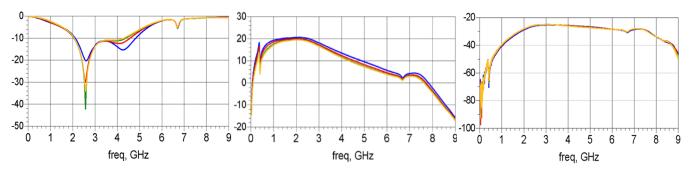


Figure 11.2.1: S11(IRL) vs Freq

Figure 11.2.2: S21(Gain) vs Freq Figure 11.2.3: S12(Rev Iso) vs Freq

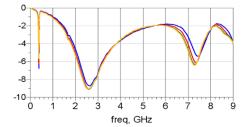


Figure 11.2.4: S22(ORL) vs Freq

11.3 2500 - 2700MHz tuned EVB (Vdd=5V, I_{DQ}=60mA), -40°C, 25°C, 85°C, 105 °C, Large Signal Data



Figure 11.3.1: Noise Figure (EVB) vs Freq

Figure 11.3.2: Output P1dB vs Freq

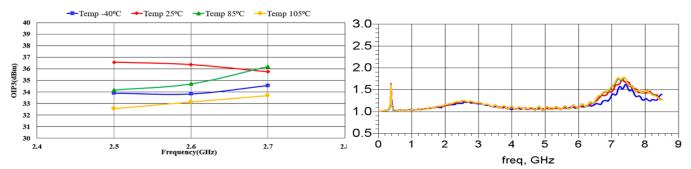


Figure 11.3.3: Output IP3 vs Freq

Figure 11.3.4: Mu1 vs Freq

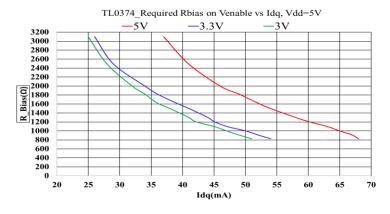


Figure 11.3.5: Rbias on Venable vs Idq

12.0 Test Procedures

Biasing Sequence

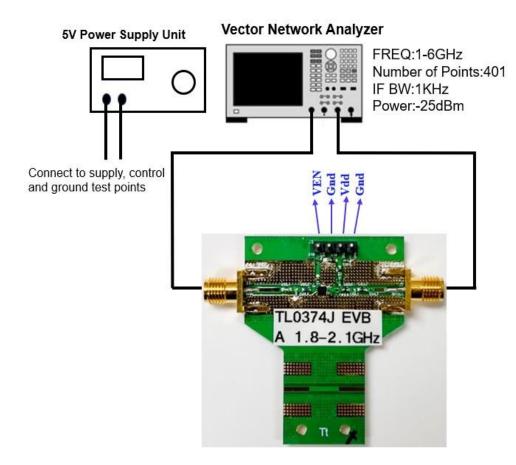
To properly bias the TL0374J-EVB-A, follow these steps: Connect the supply Ground the Ground test point.

- Apply bias to the Venable=5V test points.
- Apply bias to the Vdd=5V test point.
- Apply an RF input signal.

The TL0374J-EVB-A is shipped fully assembled and tested. Figure 12.1 illustrates a basic test setup diagram for evaluating s-parameters, which includes gain, input output return loss and reverse isolation using a network analyzer. Follow these steps to complete the test setup and verify the operation of the TL0374J-EVB-A

- 1. Connect the Ground test point to the ground terminal of the power supply.
- 2. Connect the Venable and Vdd test points to the voltage output terminal of a 5 V supply that sources a current of approximately 60 mA.
- 3. Connect a calibrated network analyzer to the RF-in, and RF-out SMA connectors. Sweep the frequency from 1 GHz to 6 GHz and set the power to -25 dBm.

The TL0374J-EVB-A is expected to have a gain of 21.5 dB at 1.8 GHz. Refer to Table 9.1 for the expected results.


Additional test equipment is required for a comprehensive evaluation of the device's functions and performance.

For noise figure evaluation, use either a noise figure analyzer or a spectrum analyzer with a noise option. It is recommended to use a low excess noise ratio (ENR) noise source.

For third-order intercept point evaluation, use two signal generators and a spectrum analyzer. A high isolation power combiner is recommended.

For power compression and power handling evaluations, use a two-channel power meter and a signal generator. Ensure that the input power amplifier has sufficient power capacity. Test accessories such as couplers and attenuators must also have adequate power handling capabilities.

Please note that measurements conducted at the SMA connectors of the TL0374J-EVB-A include the losses of the SMA connectors and the PCB. The through line should be measured to calibrate the effects of the TL0374J-EVB-A. The through line consists of an RF input line and an RF output line that are connected to the device and have equal lengths.

Test set up:

For LNA on mode apply

- Connect ground
- Apply VEN[Venable]=5V
- Apply Vdd =5V
- Apply RF

Figure 12.1 TEST Set Up Diagram

13.0 Device Package Information

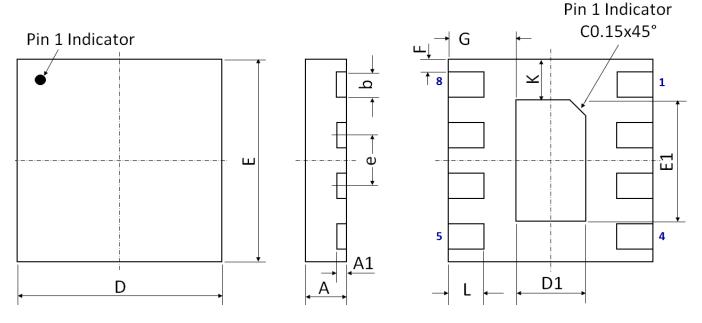


Figure 13.1 Device Package Drawing

(All dimensions are in mm)

Table 13.1 Device Package Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
Α	0.75	±0.05	Е	2.00 BSC	±0.05
A1	0.203	±0.02	E1	1.20	±0.05
b	0.25	±0.02	F	0.125	±0.02
D	2.00 BSC	±0.05	G	0.66	±0.03
D1	0.68	±0.03	L	0.35	±0.05
е	0.50 BSC	±0.05	K	0.40	±0.05

Note: Lead finish: Pure Sn without underlayer; Thickness: 7.5μm ~ 20μm (Typical 10μm ~ 12μm)

Attention:

Please refer to application notes *TN-001* and *TN-002* at http://www.tagoretech.com for PCB and soldering related guidelines.

14.0 PCB Land Design

Guidelines:

- [1] 2-layer PCB is recommended.
- [2] Via diameter is recommended to be 0.3mm to prevent solder wicking inside the vias.
- [3] Thermal vias shall only be placed on the center pad and should be filled/plugged with solder or copper.
- [4] The maximum via number for the center pad is $1(X)\times 2(Y)=2$

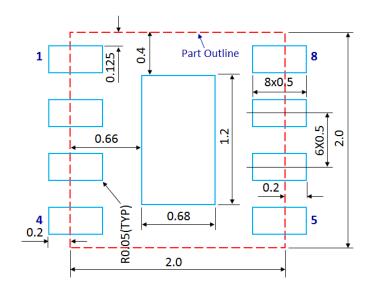


Figure 14.1 PCB Land Pattern

(Dimensions are in mm)

Figure 14.2 Solder Mask Pattern

(Preferred)

(Dimensions are in mm)

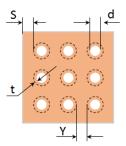


Figure 14.3 Thermal Via Pattern

(Recommended Values: S≥0.15mm; Y≥0.20mm; d=0.3mm; Plating Thickness t=25µm or 50µm)

15.0 PCB Stencil Design

Guidelines:

- [1] Laser-cut, stainless steel stencil is recommended with electro-polished trapezoidal walls to improve the paste release.
- [2] Stencil thickness is recommended to be 125µm.

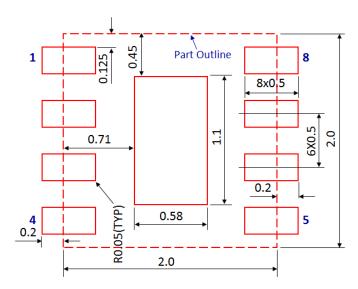


Figure 15.1 Stencil Openings (Dimensions are in mm)

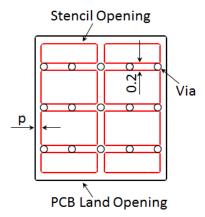
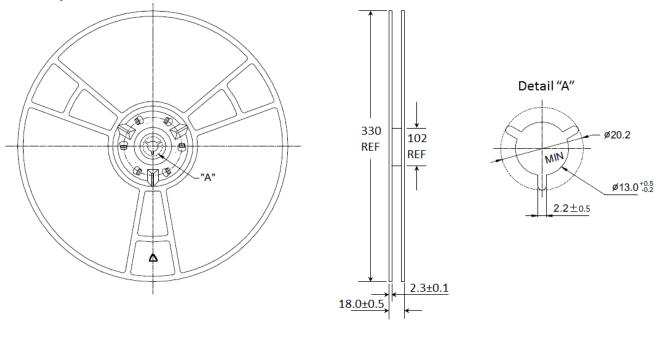



Figure 15.2 Stencil Openings Shall not Cover Via Areas If Possible (Dimensions are in mm)

16.0 Tape and Reel Information

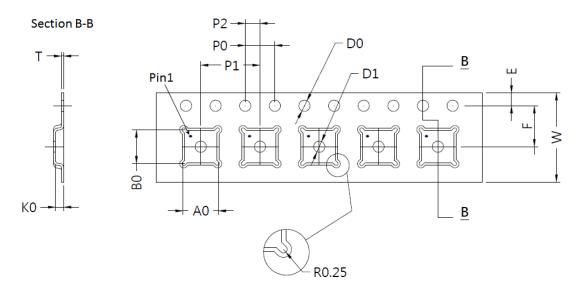


Figure 16.1 Tape and Reel Drawing

Table 16.1 Tape and Reel Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
A0	2.35	±0.10	K0	1.10	±0.10
В0	2.35	±0.10	P0	4.00	±0.10
D0	1.50	+0.10/-0.00	P1	8.00	±0.10
D1	1.50	+0.10/-0.00	P2	2.00	±0.05
E	1.75	±0.10	T	0.30	±0.05
F	5.50	±0.05	W	12.00	±0.30

Edition Revision 1.8 - 2023-12-22

Published by

Tagore Technology Inc.

601 W Campus Dr. Ste C1

Arlington Heights, IL 60004, USA

©2020 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Technology assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Technology. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Technology: support@tagoretech.com.