

TL0374J

0.03 – 3.0 GHz GaAs Ultra Low Noise Amplifier

Application Note: TL0374J EVB C

Application Note 30MHz~1000MHz 3.3V 30mA

Rev-1.2

List of Contents

1	General Description
2	TL0374J-EVB-C Board Details
3	TL0374J -EVB-C Bill of Material
4	TL0374J -EVB-C Biasing sequence
5	TL0374J -EVB-C Board Measurement Summary
6	TL0374.L-EVB-C Board Measurement Results

1. General Description

The TL0374J is a broadband, ultra-low Noise Amplifier (LNA) providing high gain and linearity. With a simple input and output match, this LNA can be tuned for different frequency bands targeting LTE (small cells and infrastructure) and any other applications requiring low noise, high gain, and linearity. For >3GHz frequency band, TL0375J can be considered. The TL0374J is packaged in a compact, low-cost Dual Flat No Lead (DFN) 2x2x0.75mm, 8 pin plastic package.

TL0374J-EVB-C is an evaluation board specially tuned for frequency range of 30MHz~1000MHz applications. Its high gain, low noise performance makes it suitable.

2. TL0374J-EVB-C Board Details

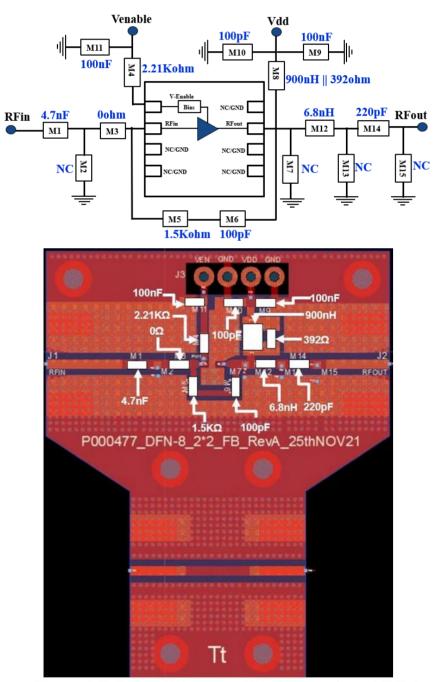


Figure 2.1 TL0374J-EVB-C 30MHz ~ 1000MHz Schematic and EVB Layout

3. TL0374J-EVB-C Bill of Material

Component ID	Value	Manufacturer Recommended Part Number		
M1	4.7nF, 50V	Murata GRM1885C1H472JA01D		
M3	Ω0	Panasonic ERJ-2GE0R00X		
M4	2.21ΚΩ	Panasonic ERJ-2RKF2211X		
M5	1.5ΚΩ	Panasonic ERJ-2RKF1501X		
M6, M10	100pF	AVX	04025A101JAT4A	
M8	900nH	Coil craft	1008AF-901XJLC	
M8	392Ω	Panasonic	ERJ-UP3F3920V	
M9, M11	100nF	TDK	C1005X7R1H104K050BE	
M12	6.8nH	Coil craft	0402HP-6N8XJRW	
M14	220pF	Kemet	C0402C221K5GACAUTO	
Q1	GaAs LNA	Tagore Technology	nnology TL0374J	
PCB		Rogers RO4350B, 20 mils, 1 oz copper		

Table 3.1 TL0374J-EVB-C BOM

4. TL0374J-EVB-C Biasing Sequence

Turn ON Device	Turn OFF Device		
1. Set Venable to +5V	1. Turn RF power off		
2. Set V _{DD} to +5V	2. Turn off V _{DD}		
3. Device will draw required IDQ current	3. Turn off Venable		
4. Apply RF power			

Table 4.1 TL0374J-EVB-C Bias and Sequencing

5. TL0374J-EVB-C Board Measurement Summary

Frequency (MHz)	De-embedded Noise figure (dB)	Gain(dB)	OP1 (dBm)	OIP3(dBm) Fspacing:1MHz 0dBm Pout/tone	S11(dB)	S22(dB)	Mu1
30	1.1	25.6	14.4	28.4	-13.83	-22.7	1.1
100	0.7	25.7	14.3	27.5	-12.55	-23.8	1.2
250	0.6	25.2	14.6	28.1	-12.92	-17.2	1.3
500	0.6	23.9	14.7	28.7	-14.82	-14.6	1.5
750	0.5	22.6	15.2	29.1	-18.07	-18.4	1.7
1000	0.5	21.3	14.9	29.3	-26.34	-28.4	1.7

Table 5.1 TL0374J-EVB-C Electrical Characteristics Summary

6. TL0374J-EVB-C Test Results

All the tests are carried out at room temperature.

6.1. S parameters

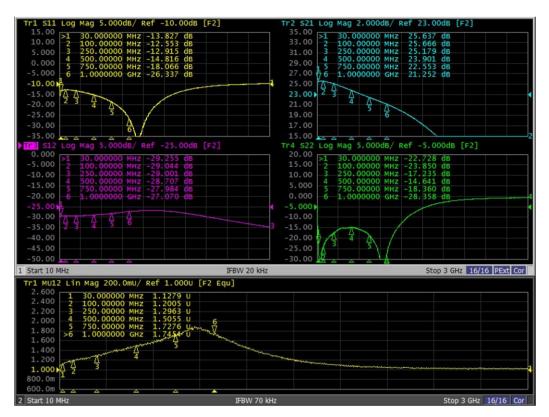
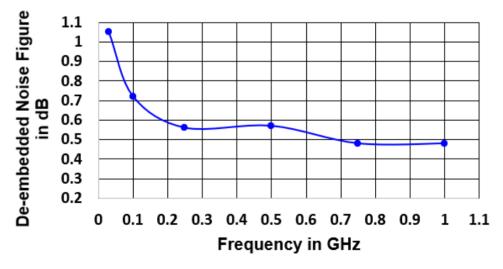



Figure 6.1.1. S parameters of TL0374J-EVB-C

6.2. De-embedded Noise Figure

^{**} **Note:** Trace loss is around 0.01-0.03dB. So SMA to SMA NF will lie between 1.05dB to 0.5dB.

Figure 6.2.1. De-embedded Noise Figure mode of TL0374J-EVB-C

6.3. Large Signal Test Results

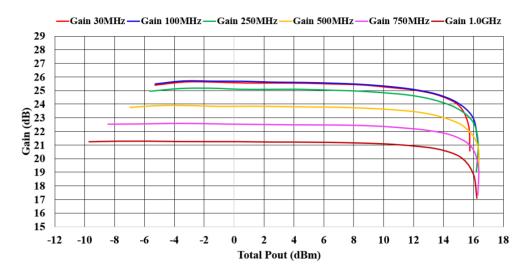


Figure 6.3.1. Gain Vs Pout of TL0374J-EVB-C

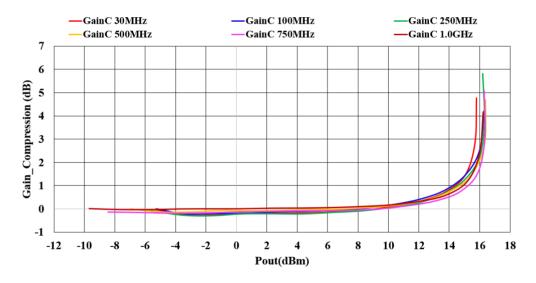


Figure 6.3.2. Gain compression Vs Pout of TL0374J-EVB-C

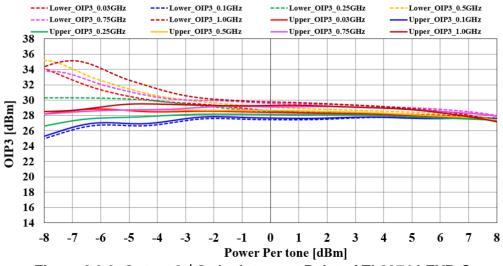


Figure 6.3.3. Output 3rd Order Intercept Point of TL0374J-EVB-C

Edition Revision 1.2 - 2024-01-23

Published by

Tagore Technology Inc.

601 W Campus Dr. Ste C1

Arlington Heights, IL 60004, USA

©2020 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Technology assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Technology. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Technology: support@tagoretech.com.