

TP0310K - 27dBm (0.5W) CW, 0.1 - 3.8 GHz Power Low Noise Amplifier

1.0 Features

• Small signal gain @ 1850MHz: 16.5dB

• NF @ 1850MHz: 1.0dB

OP1dB @ 1850MHz: 27.5dBm
OIP3dB @ 1850MHz: 39dBm
5V Typical operating voltage

Operating frequency: 0.1 to 3.8GHz

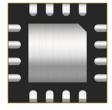


Figure 1.1 Device Image (16 Pin 3x3x0.8mm QFN Package)

2.0 Applications

- 4G/5G Infrastructure Radios
- Small Cells and Cellular Repeaters
- . L, S band Phase Array Radar
- Mil/Comms Radios
- SDARS

RoHS/REACH/Halogen Free Compliance

3.0 Description

The TP0310K is a power Low Noise Amplifier (LNA) providing high gain and linearity. With a simple input and output match, this LNA can be tuned for different frequency bands targeting low noise, high power, and high linearity over 0.1-3.8GHz frequency band.

At 1.85 GHz, the amplifier typically provides 16.5 dB gain, 27.5dBm OP1, +39 dBm OIP3, and a 1.0 dB noise figure, while drawing 140-160 mA current from a +5 V supply.

The TP0310K is packaged in a compact, low-cost Dual Flat No Lead (QFN) 3x3x0.8mm, 16 pin plastic package.

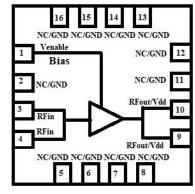


Figure 3.1 Function Block Diagram (Top View)

4.0 Ordering Information

Table 4.1 Ordering Information

Base Part Number	Package Type	Form	Qty	Reel Diameter	Reel Width	Orderable Part Number
TP0310K	16Pin 3×3×0.8mm DFN	Tape & Reel	5000	13" (330mm)	18mm	TP0310KMTRPBF
	Tuned Evaluation Board, 1700 - 2000MHz					
	Tuned Evaluation Board, 2500 - 2700MHz					
Tuned Evaluation Board, 3300 - 3800MHz					TP0310K-EVB-C	
	Tuned Evaluation	on Board, 130 -	950MHz			TP0310K-EVB-D

5.0 Pin Description

Table 5.1 Pin Definition

Pin Number	Pin Name	Description		
2,5-8, 11-16	NC	No internal connection, can be connected to ground		
1	Venable	Venable along with series resistor, sets the Idq. Venable <0.2V		
ı	Venable	disables the device		
3,4	RFIN	RF Input. DC blocking cap required		
9,10	RFout/V _{dd}	RF Output. Vdd supplied through an external choke inductor		
Package Base Paddle/Slug		DC and RF Ground. Also provides thermal relief. Multiple vias are		
i ackage base	i addie/oldg	recommended		

Note: [1] The backside ground slug of the device must be grounded directly to the ground plane through multiple vias to ensure proper operation. Adequate heatsinking required.

6.0 Absolute Maximum Ratings

Table 6.1 Absolute Maximum Ratings @TA=+25°C Unless Otherwise Specified

Parameter	Symbol	Value	Unit				
Electrical Ratings							
Supply voltage, Venable	V _{dd}	+6	V				
Drain current	I_{DQ}	150	mA				
RF input power CW	RF _{IN}	23	dBm				
Storage Temperature Range	T _{st}	-55 to +150	°C				
Operating Temperature Range	T _{op}	-40 to +105	°C				
Maximum Junction Temperature	TJ	170	°C				
Thermal Rati	ngs						
Thermal Resistance (junction-to-case) – Bottom side	Rejc	10	°C/W				
Soldering Temperature	T _{SOLD}	260	°C				
ESD Rating	gs						
Human Body Model (HBM)	Level 1B	500 to <1000	V				
Charged Device Model (CDM)	Level C	≥1000	V				
Moisture Rating							
Moisture Sensitivity Level	MSL	1	-				

Attention:

Maximum ratings are absolute ratings. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding one or a combination of the absolute maximum ratings may cause permanent and irreversible damage to the device and/or to surrounding circuit.

7.0 Recommended DC Operating Conditions

Table 7.1 Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Drain Voltage	V_{DD}		+5.0		V
Venable Voltage	V _{enable}		+5.0		V
Drain Bias Current	I _{DQ} , Set by external resistor		140		mΑ
Venable Bias Current	bias		3.5	4	mA
Operating Temperature Range		-40	+25	+105	°C

8.0 Switching Time

Table 8.1 Switching time.

Parameter	Test Condition	Typical	Unit
Switching Rise Time	10/90% of the RF value	4	nsec
Switching Fall Time	10/90% of the RF value	1000	nsec

9.0 RF Electrical Specifications

Table 9.1 1700 - 2000MHz EVB-A @T_A=+25°C Unless Otherwise Specified; Venable = High

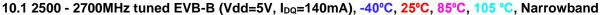
Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	Across Band		16-17		dB
Noise Figure	Across Band		1.0		dB
EVB Noise Figure	Across Band		1.05		dB
Input Return Loss	Across Band		11-14		dB
Output Return Loss	Across Band		10-13		dB
OP1dB	Across Band		27-27.5		dBm
OIP3	Across Band, 8dBm per tone, Tone Spacing 2MHz		39		dBm

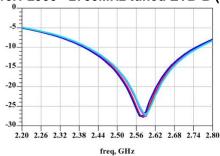
Table 9.2 2500 – 2700MHz EVB-B @T_A=+25°C Unless Otherwise Specified; Venable = High

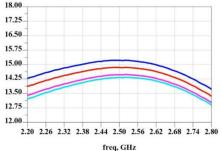
Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	2600MHz	13	14		dB
Noise Figure	2600MHz		1.1		dB
EVB Noise Figure	2600MHz		1.2		dB
Input Return Loss	2600MHz		16		dB
Output Return Loss	2600MHz		18		dB
OP1dB	2600MHz	25.5	27		dBm
OIP3	2600MHz, 8dBm per tone, Tone Spacing 2MHz	35	37		dBm

Table 9.3 3300 - 3800MHz EVB-C @T_A=+25°C Unless Otherwise Specified; Venable = High

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	Across Band		11-11.5		dB
Noise Figure	Across Band		0.85- 1.15		dB
EVB Noise Figure	Across Band		1-1.3		dB
Input Return Loss	Across Band		7-11		dB
Output Return Loss	Across Band		17-24		dB
OP1dB	Across Band		27.5		dBm
OIP3	Across Band, 8dBm per tone, Tone Spacing 2MHz		41-42		dBm


Table 9.4 130 – 950MHz EVB-D @T_A=+25°C Unless Otherwise Specified; Venable = High


Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	Across Band		27.6-21		dB
Noise Figure	Across Band		1.5-2.4		dB
EVB Noise Figure	Across Band		1.6-2.5		dB
Input Return Loss	Across Band		6-25		dB
Output Return Loss	Across Band		7-17		dB
OP1dB	Across Band		24.7-27		dBm
OIP3	Across Band, 8dBm per tone, Tone Spacing 2MHz		34-37		dBm


Table 9.5 30 – 525MHz EVB-E @T_A=+25°C Unless Otherwise Specified; Venable = High

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	Across Band		24-21		dB
Noise Figure	Across Band		2.3-1.7		dB
EVB Noise Figure	Across Band		2.3-1.7		dB
Input Return Loss	Across Band		7-8		dB
Output Return Loss	Across Band		4-6		dB
OP1dB	Across Band		25-26.5		dBm
OIP3	Across Band, 16dBm per tone, Tone Spacing 2MHz		37-40		dBm

10.0 Typical Characteristics

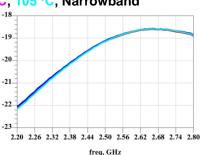


Figure 10.1 S11 vs Freq

Figure 10.2 S21 vs Freq

Figure 10.3 S12 vs Freq

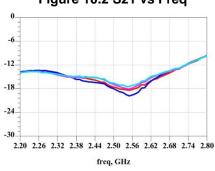
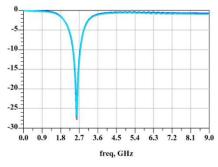
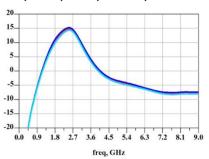




Figure 10.4 S22 vs Freq

-40°C, 25°C, 85°C, 105 °C, Broadband

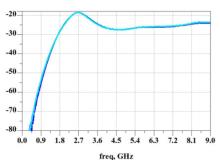


Figure 10.5 S11 vs Freq

-12 -18 0.0 0.9 1.8 2.7 3.6 4.5 5.4 6.3 7.2 8.1 9.0 freq, GHz

Figure 10.6 S21 vs Freq

Figure 10.7 S12 vs Freq 3.00 2.75 2.50-2.25-2.00-1.75-1.50-1.25-1.00-0.75-0.50-4.5 5.4 6.3 7.2 8.1 freq, GHz

Figure 10.8 S22 vs Freq

Figure 10.9 Mu1 vs Freq

-40°C, 25°C, 85°C, 105 °C

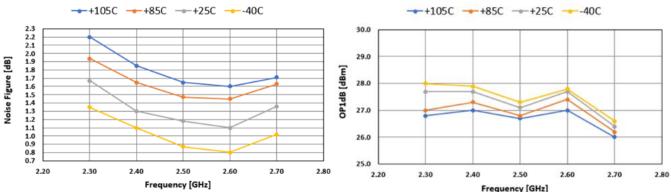
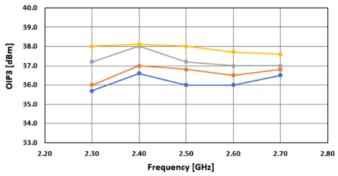
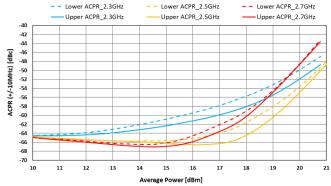



Figure 10.10 Noise Figure (EVB) vs Freq

Frequency [GHz]

Figure 10.11 Output P1dB vs Freq →+105C →+85C →+25C →-40C - - Lower ACPR_2.3GHz - - Lower ACPR 2.5GHz



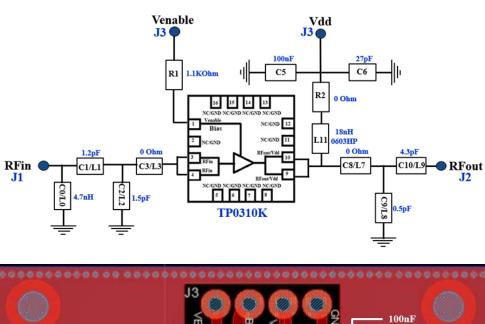

Figure 10.12 Output IP3 vs Freq

Figure 10.13 ACPR vs Average Power [8.8dB PAPR 10MHz BW]

11.0 Evaluation Boards

11.1 1700 - 2000MHz EVB A

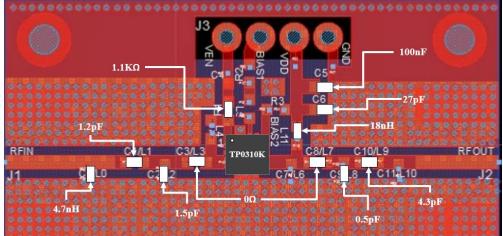


Figure 11.1 Schematic & Layout of the 1700 - 2000MHz EVB A

Table 11.1 BOM of the 1700 - 2000MHz EVB A

Component ID	Value	Manufacturer	Recommended Part Number	
C0/L0	4.7nH	Coil craft	0402HP-4N7XGRW	
C1/L1	1.2pF	Murata	GJM1555C1H1R2BB01	
C2/L2	1.5pF	Murata	GJM1555C1H1R5BB01	
R1	1.1K	Panasonic	ERJ-2RKF1101X	
C9/L8	0.5pF	Murata	GJM1555C1HR50BB01	
C10/L9	4.3pF	Murata	GJM1555C1H4R3BB01	
L11	18nH	Coil craft	0402HP-18NXGRW	
C5	100nF	TDK	C1005X7R1H104K050BE	
C6	27pF	Murata	GJM1555C1H270JB01D	
Q1	GaAs LNA	Tagore Technology	TP0310K	
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

11.2 2500 - 2700MHz EVB B

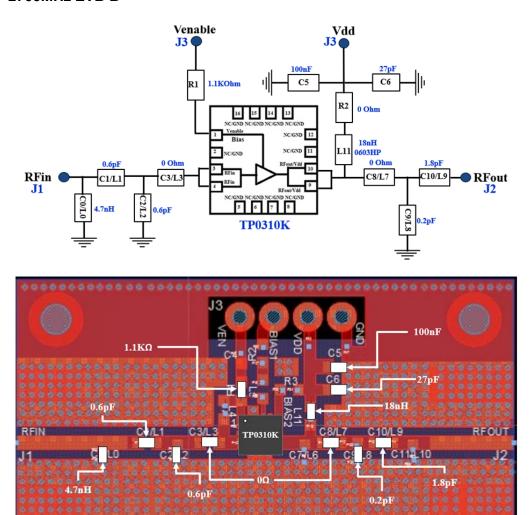
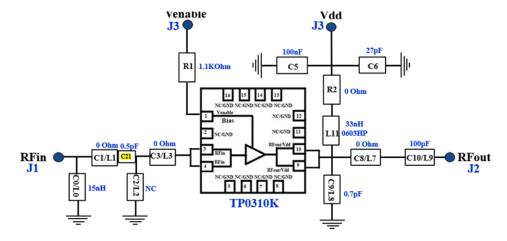



Figure 11.2 Schematic & Layout of the 2500 - 2700MHz EVB B

Table 11.2 BOM of the 2500 - 2700MHz EVB B

Component ID	Value	Manufacturer	Recommended Part Number	
C0/L0	4.7nH	Coil craft	0402HP-4N7XGRW	
C1/L1, C2/L2	0.6pF	Murata	GJM1555C1HR60BB01	
C3/L3, C8/L7 & R2	0 ohm	Panasonic	ERJ-2GE0R00X	
R1	1.1ΚΩ	Panasonic	ERJ-2RKF1101X	
C9/L8	0.2pF	Murata	GJM1555C1HR20BB01	
C10/L9	1.8pF	Murata	GJM1555C1H1R8BB01	
L11	18nH	Coil craft	0402HP-18NXGRW	
C5	100nF	TDK	C1005X7R1H104K050BE	
C6	27pF	Murata	GJM1555C1H270JB01D	
Q1	GaAs LNA	Tagore Technology	TP0310K	
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

11.3 3300 - 3800MHz EVB C

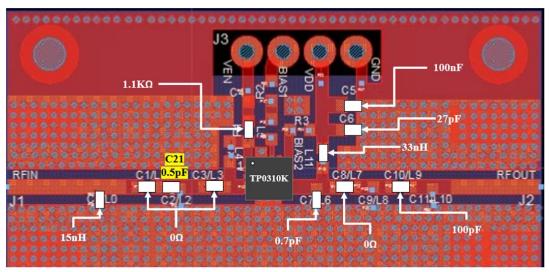


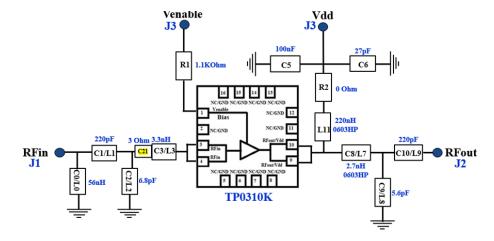
Figure 11.3 Schematic & Layout of the 3300 - 3800MHz EVB C

Table 11.3 BOM of the 3300 - 3800MHz EVB C

Component ID	Value Manufacturer Recommended Part Num			
C0/L0	15nH	Coil craft	0402HP-15NXGRW	
C21	0.5pF	Murata	GJM1555C1HR50BB01	
C1/L1, C3/L3, C8/L7 & R2	0 ohm	Panasonic	ERJ-2GE0R00X	
R1	1.1ΚΩ	Panasonic	ERJ-2RKF1101X	
C7/L6	0.7pF	Murata	GJM1555C1HR70BB01	
C10/L9	100pF	AVX	04025A101JAT4A	
L11	33nH	Coil craft	0402HP-33NXGRW	
C5	100nF	TDK	C1005X7R1H104K050BE	
C6	27pF	Murata	GJM1555C1H270JB01D	
Q1	GaAs LNA	Tagore Technology	TP0310K	
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

Note: An external series cut has been made between C1/L1 and C2/L2 in the EVB board to incorporate an extra series capacitance 0.5pF (named as C21) at the input side match.

11.4 130 - 950MHz EVB D



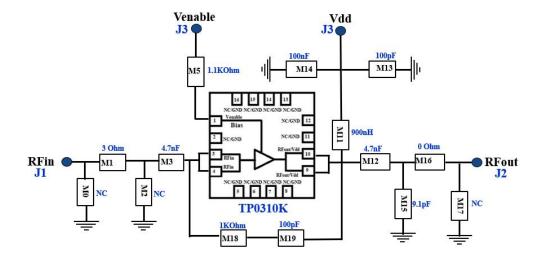

Figure 11.4 Schematic & Layout of the 130 - 950MHz EVB D

Table 11.4 BOM of the 130 - 950MHz EVB D

Component ID	Value Manufacturer Recommended Part Nu		Recommended Part Number	
C0/L0	56nH	Coil craft	0402HPH-56NXGLU	
C1/L1, C10/L9	220pF Murata GRM0335C1H2		GRM0335C1H221FA01D	
C2	6.8pF	Murata	GJM1555C1H6R8BB01D	
R14	3Ω	Panasonic	ERJ-U02F3R00X	
C3/L3	3.3nH	Coil craft	0402HP-3N3XGLU	
R1	1.1kΩ	Panasonic	ERJ-2RKF1101X	
C5	100nF	TDK	C1005X7R1H104K050BE	
C6	27pF	Murata	GJM1555C1H270JB01D	
L11	220nH	Coil craft	0402HPH-R22XGLU	
C8/L7	2.7nH	Coil craft	0402HP-2N7XGLU	
C9/L8	5.6pF	Murata	GJM1555C1H5R6BB01D	
Q1	GaAs Power LNA	Tagore Technology	TP0310K	
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

Note: An external series cut has been made between C3/L3 and C2/L2 in the EVB board to incorporate an extra series resistance 30hm (named as R14) at the input side match.

11.5 30 - 525MHz EVB E

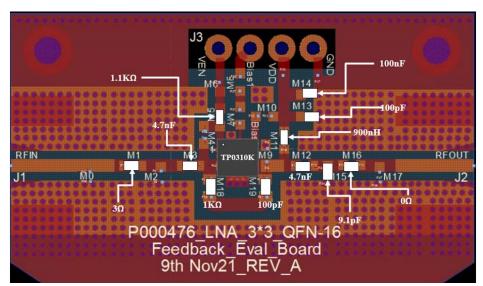


Figure 11.5 Schematic & Layout of the 30 - 525MHz EVB E

Table 11.5 BOM of the 30 - 525MHz EVB E

Component ID	Value Manufacturer Recommended Part Nun			
M1	3Ω Panasonic ERJ-U02F		ERJ-U02F3R00X	
M3,M12	4.7nF	Murata	GRM1885C1H472JA01D	
M5	1.1ΚΩ	Panasonic	ERJ-2RKF1101X	
M11	900nH	Coil craft	1008AF-901XJLC	
M13, M19	100pF	AVX	04025A101JAT4A	
M14	100nF	TDK	C1005X7R1H104K050BE	
M15	9.1pF	Murata	GJM1555C1H9R1BB01	
M16	0Ω	Panasonic	ERJ-2GE0R00X	
M18	1.0ΚΩ	Panasonic	ERJ-2RKF1001X	
Q1	GaAs Power LNA	Tagore Technology	TP0310K	
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

12.0 Test Procedures

Biasing Sequence

To properly bias the TP0310K-EVB-A, follow these steps: Connect the supply Ground the Ground test point.

- Apply bias to the Venable=5V test points.
- Apply bias to the Vdd=5V test point.
- Apply an RF input signal.

The TP0310K-EVB-A is shipped fully assembled and tested. Figure 12.1 illustrates a basic test setup diagram for evaluating s-parameters, which includes gain, input output return loss and reverse isolation using a network analyzer. Follow these steps to complete the test setup and verify the operation of the TP0310K-EVB-A

- 1. Connect the Ground test point to the ground terminal of the power supply.
- 2. Connect the Venable and Vdd test points to the voltage output terminal of a 5 V supply that sources a current of approximately 140 mA.
- 3. Connect a calibrated network analyzer to the RF-in, and RF-out SMA connectors. Sweep the frequency from 1 GHz to 6 GHz and set the power to -25 dBm.

The TP0310K-EVB-A is expected to have a gain of 16.5 dB at 1.8 GHz. Refer to Table 9.1 for the expected results.

Additional test equipment is required for a comprehensive evaluation of the device's functions and performance.

For noise figure evaluation, use either a noise figure analyzer or a spectrum analyzer with a noise option. It is recommended to use a low excess noise ratio (ENR) noise source.

For third-order intercept point evaluation, use two signal generators and a spectrum analyzer. A high isolation power combiner is recommended.

For power compression and power handling evaluations, use a two-channel power meter and a signal generator. Ensure that the input power amplifier has sufficient power capacity. Test accessories such as couplers and attenuators must also have adequate power handling capabilities.

Please note that measurements conducted at the SMA connectors of the TP0310K-EVB-A include the losses of the SMA connectors and the PCB. The through line should be measured to calibrate the effects of the TP0310K-EVB-A. The through line consists of an RF input line and an RF output line that are connected to the device and have equal lengths.

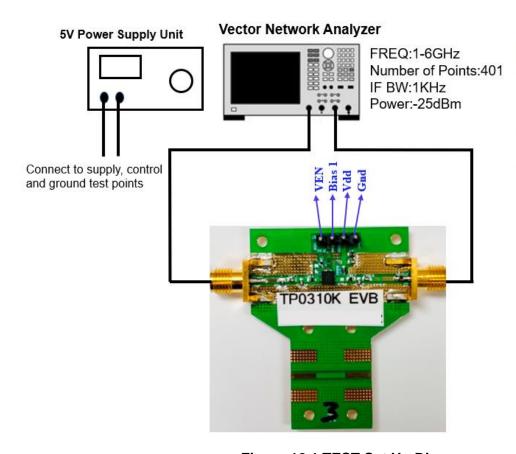


Figure 12.1 TEST Set Up Diagram

Test set up:

For LNA on mode apply

- Connect ground
- Apply VEN[Venable]=5V
- Apply Vdd =5V
- No connection on Bias 1
- Apply RF

13.0 Device Package Information

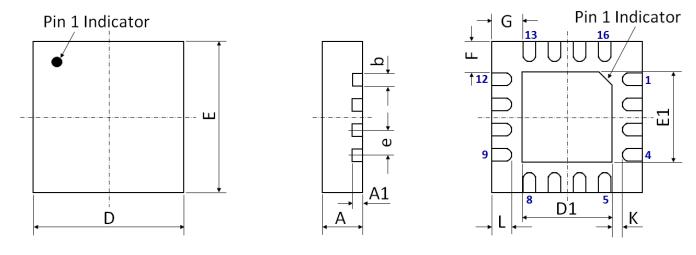


Figure 13.1 Device Package Drawing (All dimensions are in mm)

Table 13.1 Device Package Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
Α	0.80	±0.05	E	3.00 BSC	±0.05
A1	0.203	±0.02	E1	1.70	±0.05
b	0.25	+0.05/-0.07	F	0.625	±0.05
D	3.00 BSC	±0.05	G	0.625	±0.05
D1	1.70	±0.05	L	0.25	±0.05
е	0.50 BSC	±0.05	K	0.40	±0.05

Note: Lead finish: Pure Sn without underlayer; Thickness: 7.5μm ~ 20μm (Typical 10μm ~ 12μm)

Attention:

Please refer to application notes *TN-001* and *TN-002* at http://www.tagoretech.com for PCB and soldering related guidelines.

14.0 PCB Land Design

Guidelines:

- [1] 2-layer PCB is recommended.
- [2] Via diameter is recommended to be 0.3mm to prevent solder wicking inside the vias.
- [3] Thermal vias shall only be placed on the center pad and should be filled/plugged with solder or copper.
- [4] The maximum via number for the center pad is $3(X)\times3(Y)=9$

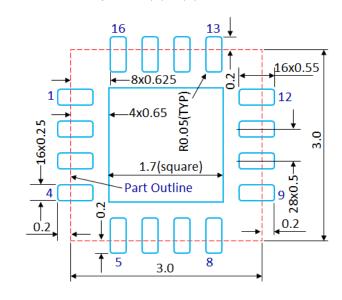


Figure 14.1 PCB Land Pattern

(Dimensions are in mm) 0.07Max 0.07Max All Around All Around Metal Under Metal Solder Mask Solder Mask Opening

Non-Solder Mask Defined (Preferred)

Solder Mask Defined

Solder Mask Opening

Figure 14.2 Solder Mask Pattern

(Dimensions are in mm)

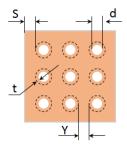


Figure 14.3 Thermal Via Pattern

(Recommended Values: S≥0.15mm; Y≥0.20mm; d=0.3mm; Plating Thickness t=25μm or 50μm)

15.0 PCB Stencil Design

Guidelines:

- [1] Laser-cut, stainless steel stencil is recommended with electro-polished trapezoidal walls to improve the paste release.
- [2] Stencil thickness is recommended to be 125µm.

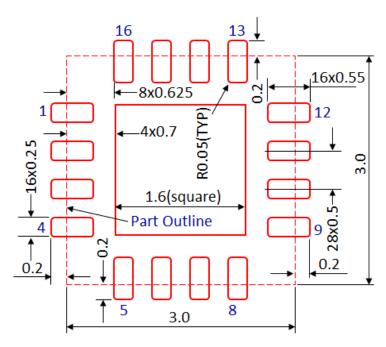


Figure 15.1 Stencil Openings (Dimensions are in mm)

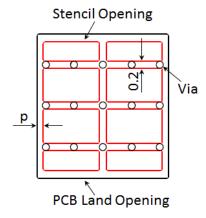


Figure 15.2 Stencil Openings Shall not Cover Via Areas If Possible (Dimensions are in mm)

16.0 Tape and Reel Information

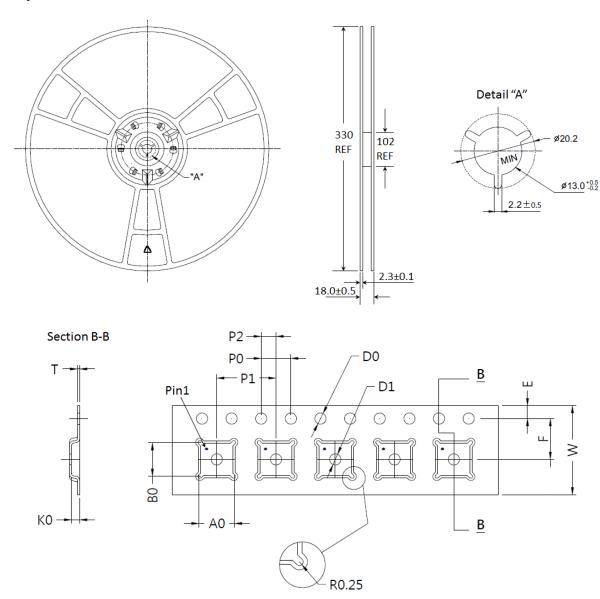


Figure 16.1 Tape and Reel Drawing

Table 16.1 Tape and Reel Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
A0	3.35	±0.10	K0	1.10	±0.10
В0	3.35	±0.10	P0	4.00	±0.10
D0	1.50	+0.10/-0.00	P1	8.00	±0.10
D1	1.50	+0.10/-0.00	P2	2.00	±0.05
Е	1.75	±0.10	Т	0.30	±0.05
F	5.50	±0.05	W	12.00	±0.30

Edition Revision 1.7 - 2023-11-08

Published by

Tagore Technology Inc.

601 W Campus Dr. Ste C1

Arlington Heights, IL 60004, USA

©2020 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Technology assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Technology. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Technology: support@tagoretech.com.