

TP0310K

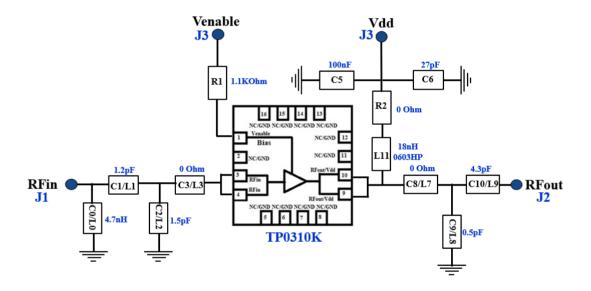
27dBm CW 0.1-3.8GHz GaAs Power LNA

Application Note: TP0310K EVB A

Application Note 1700MHz~2000MHz 5.0V 140mA

Rev-1.1

List of Contents


1	General Description
2	TP0310K-EVB-A Board Details
3	TP0310K-EVB-A Bill of Material
4	TP0310K-EVB-A Biasing sequence
5	TP0310K-EVB-A Board Measurement Summary
6	TP0310K-EVB-A Board Measurement Results

1. **General Description**

The TP0310K is a power Low Noise Amplifier (LNA) providing high gain and linearity. With a simple input and output match, this LNA can be tuned for different frequency bands targeting low noise, high power, and high linearity over 0.1-3.8GHz frequency band. At 1.85 GHz, the amplifier typically provides 16.5 dB gain, 27.5dBm OP1, +39 dBm OIP3, and a 1.0 dB noise figure, while drawing 140-160 mA current from a +5 V supply.

TP0310K-EVB-A is an evaluation board specially tuned for frequency range of 1700MHz~2000MHz applications. Its application in the areas of Wireless infrastructure, smart cells, cellular repeaters, SDARs Mil/comm radios etc. The TP0310K is packaged in a compact, low-cost Dual Flat No Lead (QFN) 3x3x0.8mm, 16 pin plastic package.

2. TP0310K-EVB-A Board Details

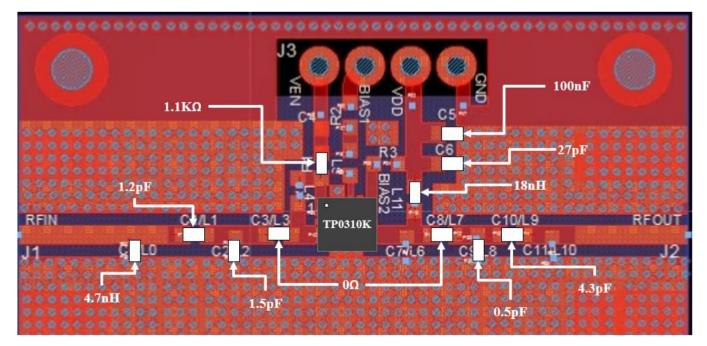


Figure 2.1 TP0310K-EVB-A 1700MHz ~ 2000MHz Schematic and EVB Layout

3. TP0310K-EVB-A Bill of Material

Component ID	Value	Manufacturer Recommended Part Number		
C0/L0	4.7nH	Coil craft 0402HP-4N7XGRW		
C1/L1	1.2pF	Murata GJM1555C1H1R2BB01		
C2/L2	1.5pF	Murata GJM1555C1H1R5BB01		
R1	1.1K	Panasonic ERJ-2RKF1101X		
C9/L8	0.5pF	Murata GJM1555C1HR50BB01		
C10/L9	4.3pF	Murata GJM1555C1H4R3BB0		
C3/L3, C8/L7, R2	0 ohm	Panasonic ERJ-2GE0R00X		
L11	18nH	Coil craft 0402HP-18NXGRW		
C5	100nF	TDK C1005X7R1H104K050BE		
C6	27pF	Murata GJM1555C1H270JB01I		
Q1	GaAs LNA	Tagore Technology TP0310K		
PCB		Rogers RO4350B, 20 mils, 1 oz copper		

Table 3.1 TP0310K-EVB-A BOM

4. TP0310K-EVB-A Biasing Sequence

Turn ON Device	Turn OFF Device		
1. Set Venable to +5V	1. Turn RF power off		
2. Set V _{DD} to +5V	2. Turn off V _{DD}		
3. Device will draw required I _{DQ} current	3. Turn off Venable		
4. Apply RF power			

Table 4.1 TP0310K-EVB-A Bias and Sequencing

5. TP0310K-EVB-A Board Measurement Summary

Frequency (MHz)	EVB Noise figure (dB)	Gain(dB)		OIP3(dBm) 1MHz tone spacing & 8dBm power per tone	S11(dB)	S22(dB)	Mu1
1700	1	17.3	26.8	38.8	-13.3	-13.5	1.1
1850	1	16.8	27.5	39.0	-14.3	-11.4	1.1
2000	1.1	16.1	27.4	39.2	-11.2	-10.4	1.1

Table 5.1 TP0310K-EVB-A Electrical Characteristics Summary

6. TP0310K-EVB-A Test Results

All the tests are carried out at room temperature.

6.1.S parameters

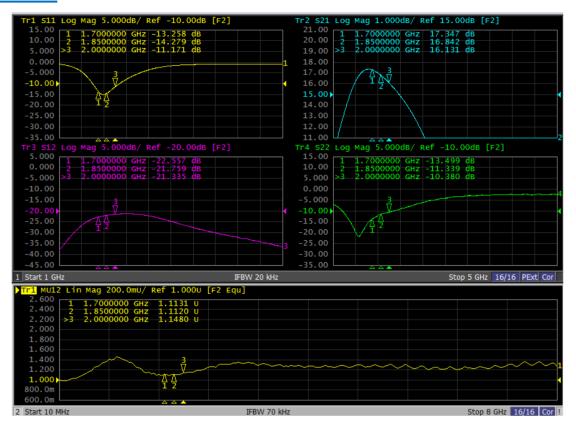


Figure 6.1.1. S parameters of TP0310K-EVB-A

6.2. SMA to SMA Noise Figure

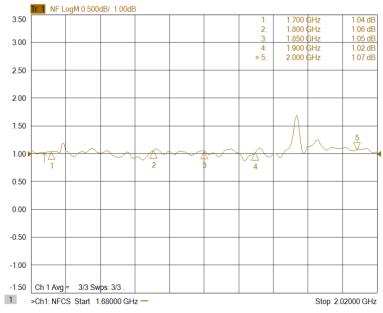


Figure 6.2.1 SMA to SMA NF of TP0310K-EVB-A

6.3. Large Signal Test Results

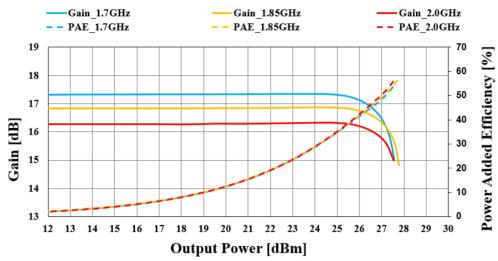


Figure 6.3.1. Gain Vs Pout of TP0310K-EVB-A

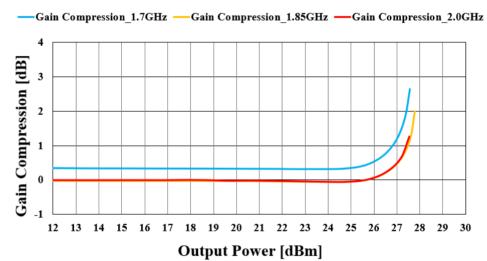


Figure 6.3.2. Gain compression Vs Pout of TP0310K-EVB-A

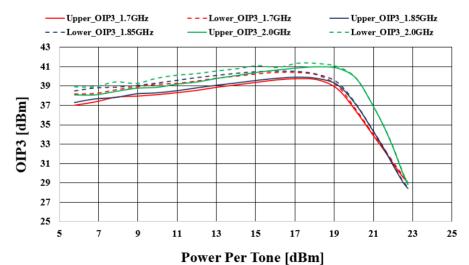


Figure 6.3.3. OIP3 Vs Pout per tone of TP0310K-EVB-A

6.4. ACPR Test Results

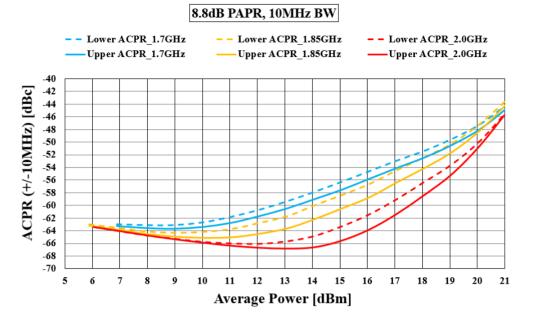


Figure 6.4.1. ACPR vs Average power of TP0310K-EVB-A

Edition Revision 1.1 - 2023-11-08

Published by

Tagore Technology Inc.

601 W Campus Dr. Ste C1

Arlington Heights, IL 60004, USA

©2020 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Technology assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Technology. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Technology: support@tagoretech.com.