TR0329M: 2.0 – 4.2 GHz Ultra Low Noise 2 Stage Bypassed LNA

1.0 Features

- Small signal gain @ 3600MHz: 34dB (High Gain mode)
 @ 3600MHz: 15dB (Low Gain mode)
- NF @ 3600MHz: 0.5dB (High Gain mode)
 @ 3600MHz: 0.5dB (Low Gain mode)
- P1dB @ 3600MHz: 20dBm (High Gain mode)
 @ 3600MHz: 10.5dBm (Low Gain mode)
- 5V Typical operating voltage
- Operating frequency: 2.0 to 4.0GHz

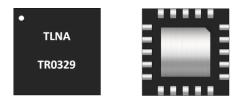


Figure 1.1 Device Image (20 Pin 3.5×3.5×0.75mm QFN Package)

2.0 Applications

- 4G/5G Infrastructure Radios
- Small Cells and Cellular Repeaters
- Phase Array Radar
- SDARS

3.0 Description

The TR0329M is a high-linearity, ultra-low noise 2-stage gain block amplifier module with internal 50ohm input output matching with a bypass mode functionality integrated to the second stage in the product. At 3.6 GHz, the amplifier, under high gain mode, typically provides 34dB gain, +35dBm OIP3, and 0.5 dB noise figure while drawing 90 mA current from a +5 V supply. The component also provides high performance in the low gain mode with 15dB gain, 0.5dB noise figure and +22dBm OIP3 while drawing 50 mA current.

The TR0329M is packaged in a compact, low-cost Quad Flat No Lead (QFN) 3.5x3.5x0.75mm, 20 pin plastic packages.

RoHS/REACH/Halogen Free Compliance

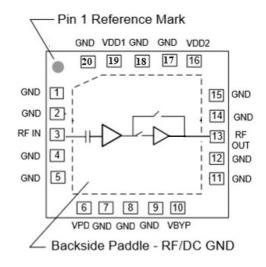


Figure 3.1 Function Block Diagram (Top View)

4.0 Ordering Information

Base Part Number	Package Type	Form	Qty	Reel Diameter	Reel Width	Orderable Part Number
TR0329M	20 Pin 3.5×3.5×0.75mm QFN	Tape and Reel	5000	13" (330mm)	18mm	TR0329MTRPBF
	Tuned Evaluation Board, 3300 - 4000MHz					TR0329M-EVB-A
	Tuned Evaluation Board, 2300 - 2700MHz					

5.0 Pin Description

Table 5.1 Pin Definition

Pin Number	Pin Name	Description
1,2,4,5,7-	NC/GND	No internal connection, can be connected to ground
9,11,12,14,15,17 &18	NC/GND	No internal connection, can be connected to ground
3	RFIN	RF Input. DC blocking cap required
13	RFout	RF Output.
19	VDD1	Vdd1 supplied through an external choke inductor
16	VDD2	Vdd2 supplied through an external choke inductor
6	VPD	+5V on this pin will shut down both the LNAs.
10	VBYP	+5V on this pin keep LNA1 on & LNA2 off. In 0V both LNAs on.
Package Base	Paddle/Slug	DC and RF Ground. Also provides thermal relief. Multiple vias are
	l'addic/Oldg	recommended

Note: [1] The backside ground slug of the device must be grounded directly to the ground plane through multiple vias to ensure proper operation. Adequate heatsinking required.

6.0 Absolute Maximum Rating

Table 6.1 Absolute Maximum Rating @TA=+25°C Unless Otherwise Specified

Parameter	Symbol	Value	Unit				
Electrical Ratings							
Supply voltages	VDD1 & VDD2	+6	V				
RF input power CW	RFIN	23	dBm				
Storage Temperature Range	T _{st}	-55 to +150	°C				
Operating Temperature Range	T _{op}	-40 to +105	°C				
Maximum Junction Temperature	TJ	170	°C				
Thermal Ratings							
Thermal Resistance (junction-to-case) – Bottom side	Thermal Resistance (junction-to-case) – Bottom side R _{θJC} 15.0 °C/W						

Soldering Temperature	TSOLD	260	°C				
ESD Ratings							
Human Body Model (HBM)	Level 1B	500 to <1000	V				
Charged Device Model (CDM)	Level C	≥1000	V				
Moisture Rating							
Moisture Sensitivity Level	MSL	1	-				

Attention:

Maximum ratings are absolute ratings. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding one or a combination of the absolute maximum ratings may cause permanent and irreversible damage to the device and/or to surrounding circuit.

7.0 Recommended DC Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Drain Voltagoo	VDD1		+5.0		V
Drain Voltages	VDD2		+5.0 +5.0 50	v	
Droin Rice Currente	IDQ1, Set by external drain feed	40	50		A
Drain Bias Currents	IDQ2, Set by external drain feed	80	90		mA
Operating Temperature Range		-40	+25	+105	°C

Table 7.1 Recommended Operating Conditions

8.0 RF Electrical Specifications for EVBs

Table 8.1 3300 – 4000MHz EVB A: @T_A=+25°C Unless Otherwise Specified; Venable = High

Parameter	Test Condition	Typical Values	Unit
Operational frequency Range		3.3-4.0	GHz
Gain	HG: LNAs on Bypass off	36.5-32	dB
Gain	LG: LNA1 on Bypass on	16-14.3	dB
Noise Figure (De-embedded)	HG: LNAs on Bypass off	0.5-0.8	dB
Noise Figure (De-embedded)	LG: LNA1 on Bypass on	0.5-0.8	dB
EVB Noise Figure	HG: LNAs on Bypass off	0.6-0.9	dB
EVB Noise Figure	LG: LNA1 on Bypass on	0.7-0.9	dB
Input Return Loss	HG: LNAs on Bypass off	Less than -9	dB
input Return Loss	LG: LNA1 on Bypass on	Less than -14	dB
Output Return Loss	HG: LNAs on Bypass off	Less than -13	dB
	LG: LNA1 on Bypass on	Less than –8.3	dB
OP1dB	HG: LNAs on Bypass off	19-20.5	dBm
OFTuB	LG: LNA1 on Bypass on	9-11	dBm
	0dBm per tone,	33-36	dBm
OIP3 (With 1MHz tone spacing)	-2dBm per tone,	19-22	dBm
	HG	90	
Current, Id	LG	45	mA
	PD	5	

Revision 1.6 - 2022-09-12

Isolation between RFIN and RF-out PD mode ON and Bypass ON	At 3.6GHz	50	dB
Isolation between RFIN and RF-out PD mode ON and High Gain ON	Receive operation	50	dB

Table 8.2 2300 – 2700MHz EVB B: @T_A=+25°C Unless Otherwise Specified; Venable = High

Parameter	Test Condition	Typical Values	Unit
Operational frequency Range		2.3-2.7	GHz
Gain	HG: LNAs on Bypass off	37-36.8	dB
Gain	LG: LNA1 on Bypass on	18-16.7	dB
Noise Figure (De-embedded)	HG: LNAs on Bypass off	0.5-0.6	dB
	LG: LNA1 on Bypass on	0.5-0.6	dB
EVB Noise Figure	HG: LNAs on Bypass off	0.6-0.7	dB
EVB Noise Figure	LG: LNA1 on Bypass on	0.6-0.7	dB
Input Return Loss	HG: LNAs on Bypass off	Less than -11	dB
	LG: LNA1 on Bypass on	Less than -11	dB
Output Return Loss	HG: LNAs on Bypass off	Less than -11	dB
Oulput Return Loss	LG: LNA1 on Bypass on	Less than –5.5	dB
OP1dB	HG: LNAs on Bypass off	17-18.5	dBm
OFIUB	LG: LNA1 on Bypass on	10-12	dBm
OID2 (With 1MHz tone oneging)	0dBm per tone,	30-31	dBm
OIP3 (With 1MHz tone spacing)	-2dBm per tone,	21-23	dBm
	HG	90	
Current, Id	LG	45	mA
	PD	5	
Isolation between RFIN and RF-out PD mode ON and Bypass ON	At 2.5GHz	55	dB
Isolation between RFIN and RF-out PD mode ON and High Gain ON	Receive operation	50	dB

Table 8.2 Control Truth Table @T_A=+25°C Unless Otherwise Specified.

PD	BP	State
1	0	LNA1 OFF, LNA2 OFF, Bypass OFF
0	0	LNA1 ON, LNA2 ON Bypass ON
0	1	LNA1 ON, LNA2 OFF, Bypass ON
1	1	LNA1 OFF, LNA2 OFF, Bypass OFF

Table 8.3 Switching Speed @T_A=+25°C Unless Otherwise Specified.

PD	BP	State	50% Vctrl to 90% of RF	50% Vctrl to 10% of RF	Units
0V	0V	LNA1 ON, LNA2 ON, Bypass OFF	350		
	5V	LNA1 ON, LNA2 OFF Bypass ON		300	
5V	0V	LNA1 OFF, LNA2 OFF, Bypass OFF	700	430	ns
	5V	LNA1 OFF, LNA2 OFF, Bypass ON	320	560	

9.0 Typical Characteristics

Tagore

Technology

Figure 9.1.1 S11 (IRL in dB) vs Freq(GHz)

Figure 9.1.2 S21 (Gain in dB) vs Freq(GHz)



Figure 9.1.3 S12 (Rev Iso in dB) vs Freq(GHz)

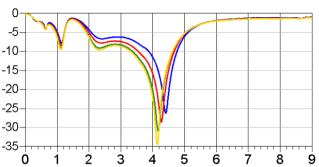
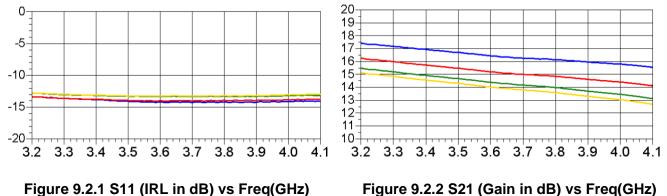



Figure 9.1.4 S22 (ORL in dB) vs Freq(GHz)

9.2 3300 - 4000MHz tuned EVB (Low Gain mode), -40°C,25°C,85°C,105 °C, narrowband

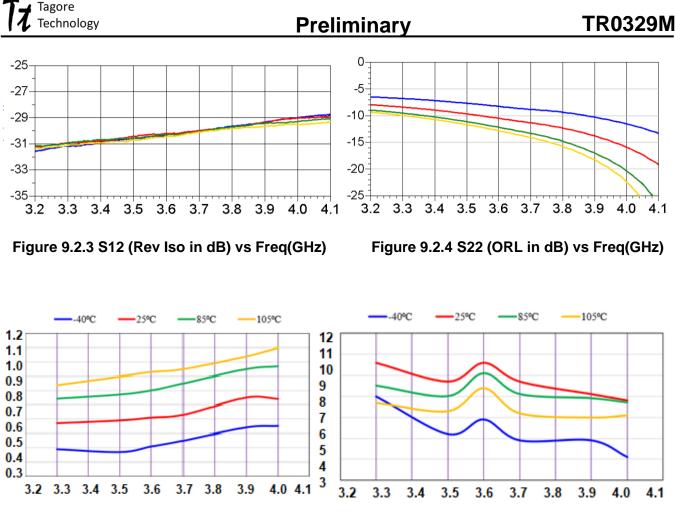
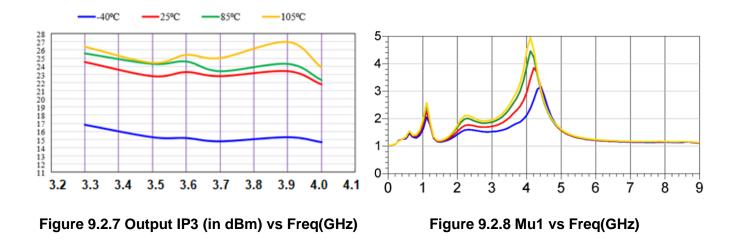



Figure 9.2.5 EVB Noise Figure (in dB) vs Freq(GHz)

Figure 9.2.6 Output P1dB vs Freq(GHz)

0

-5-

9.3 3300 - 4000MHz tuned EVB (High Gain mode), -40°C,25°C,85°C,105 °C, broadband

Figure 9.3.1 S11 (IRL in dB) vs Freq(GHz)

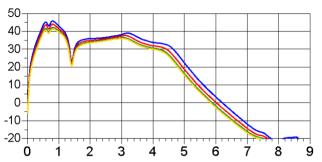


Figure 9.3.2 S21 (Gain in dB) vs Freq(GHz)

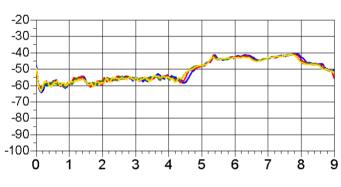
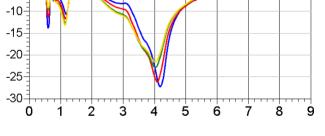



Figure 9.3.3 S12 (Rev Iso in dB) vs Freq(GHz)

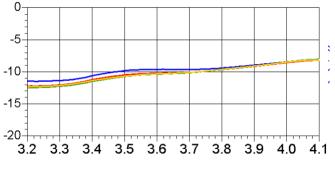


Figure 9.4.1 S11 (IRL in dB) vs Freq Freq(GHz)

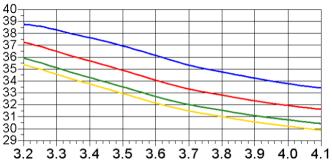


Figure 9.4.2 S21 (Gain in dB) vs Freq Freq(GHz)

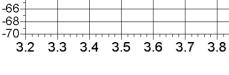


Figure 9.4.3 S12 (Rev Iso in dB) vs Freq(GHz)

3.9

Figure 9.4.4 S22 (ORL in dB) vs Freq(GHz)

25°C

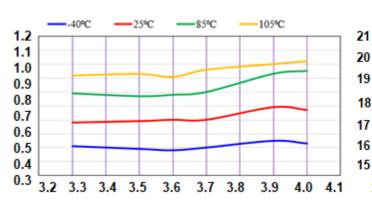
3.5

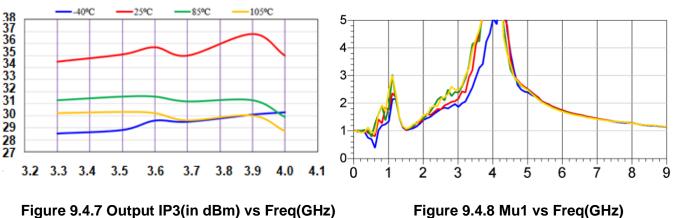
85°C

105°C

4.1

4.0

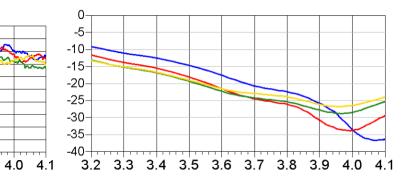



Figure 9.4.5 EVB Noise Figure (in dB) vs Freq(GHz)

3.7

3.8 3.9

3.6



3.2 3.3 3.4

Preliminary

Figure 9.4.7 Output IP3(in dBm) vs Freq(GHz)

Revision 1.6 - 2022-09-12

-50--52-

-54--56-

-58

-60

-62--64

10.0 Evaluation Boards

10.1 3300 - 4000MHz EVB A

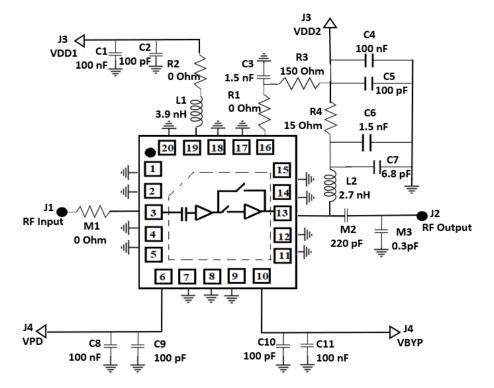


Figure 10.1 Schematic of the 3300-4000MHz EVB-A

Component ID	Value	Manufacturer	Recommended Part Number	Qty	
M1, R1, R2	0Ω	Panasonic	ERJ-2GE0R00X	3	
C7	6.8pF	Murata	GJM1555C1H6R8BB01D	1	
M2	220pF	Kemet	C0402C221K5GACAUTO	1	
C2, C5, C9, C10	100pF	AVX	04025A101JAT4A	4	
C1, C4, C8, C11	100nF	TDK	C1005X7R1H104K050BE	4	
L1	3.9 nH	Coil craft / Wurth Electronics	0402HP-3N9XGE / 744916039	1	
C3, C6	1.5nF	Murata	04025C152JAT2A	2	
L2	2.7 nH	Coil craft / Wurth Electronics	0402HP-2N7XGE / 744916027	1	
R4	15 Ω	Panasonic	ERJ-H2RD15R0X	1	
R3	150Ω	Panasonic	ERJ-2RHD1500X	1	
M3	0.3pF	Murata	GJM1555C1HR30BB01	1	
PCB		Rogers RO4350B, 20 mils, 1 oz copper 1			

Table 10.1 BOM of the 3300-4000MHz EVB A

Revision 1.6 - 2022-09-12

http://www.tagoretech.com

10.1 2300 - 2700MHz EVB B

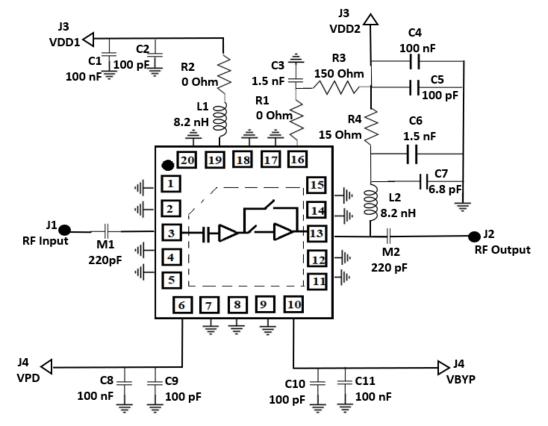
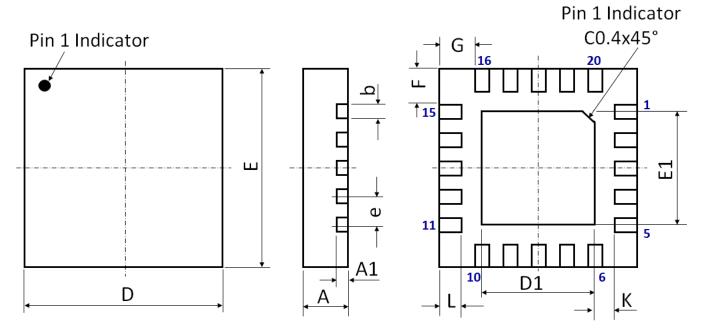



Figure 10.1 Schematic of the 2300-2700MHz EVB-B

Table 10.1	BOM of the	2300-2700MHz EVB B
------------	-------------------	--------------------

Component ID	Value	Manufacturer	Recommended Part Number	Qty
R1, R2	0Ω	Panasonic ERJ-2GE0R00X		2
C7	6.8pF	Murata GJM1555C1H6R8BB01D		1
M2	220pF	Kemet C0402C221K5GACAUTO		1
C2, C5, C9, C10	100pF	AVX 04025A101JAT4A		4
C1, C4, C8, C11	100nF	TDK C1005X7R1H104K050BE		4
L1, L2	8.2 nH	Coil craft /0402HP-8N2XGE /Wurth Electronics744916039		2
R4	15 Ω	Panasonic ERJ-H2RD15R0X		1
R3	150Ω	Panasonic	c ERJ-2RHD1500X	
C3, C6	1.5nF	Murata	04025C152JAT2A	2
PCB	CB Rogers RO4350B, 20 mils, 1 oz copper			1

11.0 Device Package Information

Figure 11.1 Device Package Drawing

(All dimensions are in mm)

Table 11.1 Device Package Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
A	0.75	±0.05	E	3.50 BSC	±0.05
A1	0.203	±0.02	E1	2.00	±0.05
b	0.25	±0.02	F	0.625	±0.02
D	3.50 BSC	±0.05	G	0.625	±0.03
D1	2.00	±0.03	L	0.40	±0.05
е	0.50 BSC	±0.05	K	0.35	±0.05

Note: Lead finish: Pure Sn without underlayer; Thickness: 7.5µm ~ 20µm (Typical 10µm ~ 12µm)

Attention:

Please refer to application notes *TN-001* and *TN-002* at http://www.tagoretech.com for PCB and soldering related guidelines.

12.0 PCB Land Design

Guidelines:

- [1] 2-layer PCB is recommended
- [2] Via diameter is recommended to be 0.3mm to prevent solder wicking inside the vias
- [3] Thermal vias shall be placed on the center pad
- [4] The maximum via number for the center pad is 3(X)×3(Y)=9

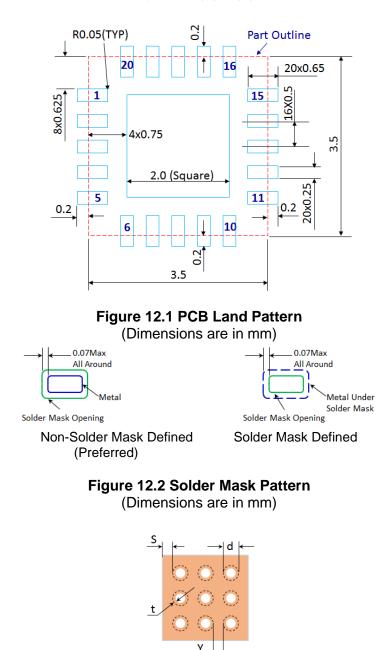


Figure 12.3 Thermal Via Pattern (Recommended Values: S≥0.15mm; Y≥0.20mm; d=0.3mm; Plating Thickness t=25µm or 50µm)

13.0 PCB Stencil Design

Guidelines:

- [1] Laser-cut, stainless steel stencil is recommended with electro-polished trapezoidal walls to improve the paste release.
- [2] Stencil thickness is recommended to be 125µm.

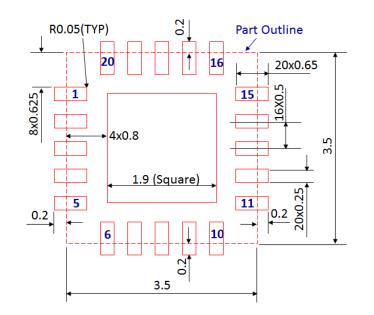
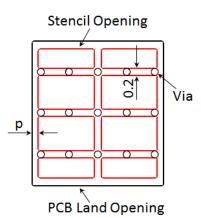
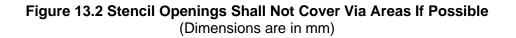




Figure 13.1 Stencil Openings (Dimensions are in mm)

14.0 Tape and Reel Information

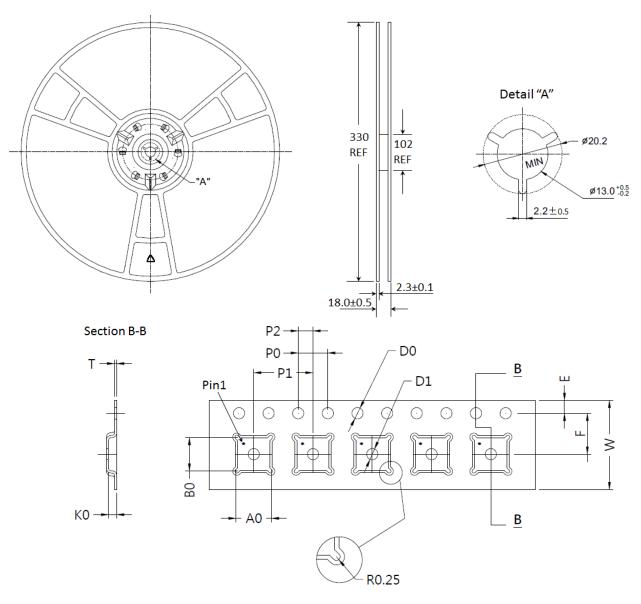


Figure 14.1 Tape and Reel Drawing

Table 14.1 Tape and Reel Dimensions					
Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
A0	2.35	±0.10	K0	1.10	±0.10
B0	2.35	±0.10	P0	4.00	±0.10
D0	1.50	+0.10/-0.00	P1	8.00	±0.10
D1	1.50	+0.10/-0.00	P2	2.00	±0.05
E	1.75	±0.10	Т	0.30	±0.05
F	5.50	±0.05	W	12.00	±0.30

Table 14.1 Tape and Reel Dimensions

Edition Revision 1.6 - 2022-09-12

Published by

Tagore Technology Inc.

601 W Campus Dr. Ste C1

Arlington Heights, IL 60004, USA

©2020 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Technology assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Technology. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Technology: support@tagoretech.com.