

TA9110K

6W CW 0.03 - 4.0 GHz GaN Power Transistor

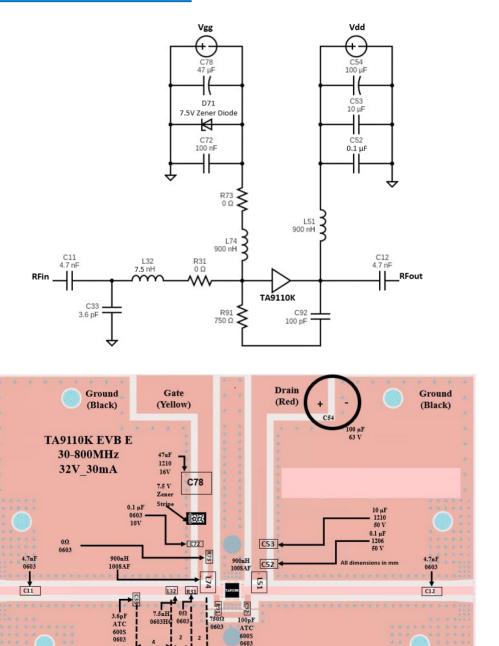
Application Note: TA9110K EVB E

Application Note
30MHz~800MHz
32V 30mA

Rev-1.1

List of Contents

1	General Description
2	TA9110K-EVB-E Board Details
3	TA9110K-EVB-E Bill of Material
4	TA9110K-EVB-E Biasing sequence
5	TA9110K-EVB-E Board Measurement Summary
6	TA9110K-FVB-F Board Measurement Results



1. General Description

The TA9110K is a broadband GaN power transistor capable of delivering 6W CW from 30MHz to 4.0GHz frequency band. The transistor can be used at lower frequencies with reduced output power. The input and output can be matched for best power and efficiency for the desired band.

The TA9110K is packaged in a compact, low-cost Quad Flat No lead (QFN) 3x3x0.8mm, 16 leads plastic package. TA9110K-EVB-E is tuned from 30MHz to 800MHz.

2. TA9110K-EVB-E Board Details

All passive components and board cuts must be located exactly as shown, relative to the via holes, shown as blue or (gray) dots. First, place D71 & then C72 before doing anything else to the board.

Figure 2.1 TA9110K-EVB-E 30MHz ~ 800MHz Schematic and EVB Layout

3. TA9110K-EVB-E Bill of Material

Component ID	Value	Manufacturer	Recommended Part Number	
C11, C12	4.7nF, 50V	Murata GRM1885C1H472JA01D		
R31, R73	Ω0	Vishay	CRCW06030000Z0EAC	
L32	7.5nH	Coil craft	0603HC-7N5XJLW	
C33	3.6pF	AVX	600S3R6CT250XT	
L51, L74	900nH	Coil craft	1008AF-901XKRC	
C52	0.1µF, 10V	AVX	0603ZC104K4T2A	
C53	10 μF, 50V	Murata	GRM32ER71H106KA12L	
C54	100μF, 63V	Nichicon	UPW1J101MPD1TD	
D71	7.5 V Zener	On Semiconductor	MMSZ5236BT1G	
C72	0.1µF, 10V	AVX	0603ZC104K4T2A	
C78	47μF, 16V	Murata	GRM32ER61C476ME15L	
R91	750Ω	Vishay	CRCW0603750RFKEB	
C92	100pF	AVX	600S101GT250XT	
Q1	6W GaN transistor	Tagore Technology	TA9110K	
PCB		Rogers RO4350B, 20 mils, 2 oz copper		

Table 3.1 TA9110K-EVB-E BOM

4. TA9110K-EVB-E Biasing Sequence

Turn ON Device	Turn OFF Device		
1. Set V _G to -5V	1. Turn RF power off		
2. Set V _D to +32V	2. Turn off V _D		
3. Adjust V _G to reach required I _{DQ} current	3. Turn off V _G		
4. Apply RF power			

Table 4.1 TA9110K-EVB-E Bias and Sequencing

5. TA9110K-EVB-E Board Measurement Summary

Frequency (MHz)	S21 Gain(dB)	S11(dB)	S22(dB)	Noise Figure	Psat(dBm)	PAE (%) @Psat
30	20.7	-14	-22.1	1.59	40.2	67
100	20.8	-14.1	-24.0	0.76	40.5	68
200	20.6	-12.0	-20.6	0.66	40.4	67
400	20.0	-9.5	-20.0	0.85	40.3	62
600	19.9	-10.4	-19.9	0.89	40.5	56
800	19.8	-18.3	-19.8	0.85	40.7	56

Table 5.1 TA9110K-EVB-E 32V 30mA Electrical Characteristics Summary

6. TA9110K-EVB-E Test Results

All the tests are carried out at room temperature.

6.1. S parameters

Figure 6.1.1. S parameters of TA9110K-EVB-E 32V 30mA

6.2. SMA to SMA Noise Figure

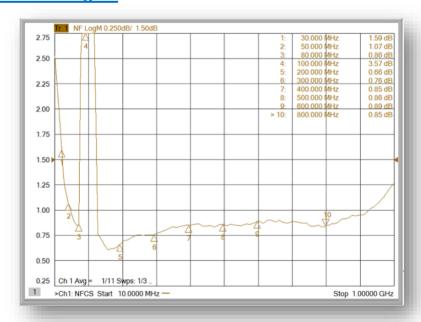


Figure 6.2.1. Noise Figure of TA9110K-EVB-E 32V 30mA

[Note: Measurement readings may exhibit spikes due to atmospheric signals, but please disregard them]

6.3. Large Signal Test Results

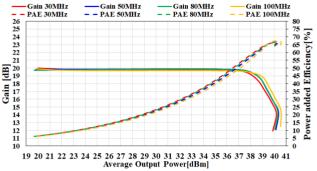


Figure 6.3.1. Gain and PAE vs P_{OUT} of TA9110K-EVB-E[30-100MHz]

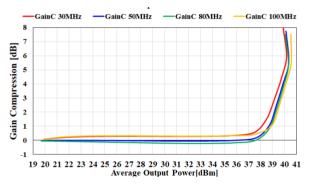


Figure 6.3.3. Gain Compression vs P_{OUT} of TA9110K-EVB-E[30-100MHz]

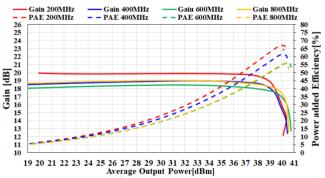


Figure 6.3.5. Gain and PAE vs P_{OUT} of TA9110K-EVB-E[200-800MHz]

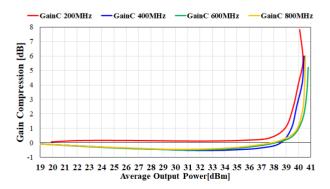


Figure 6.3.7. Gain Compression vs P_{OUT} of TA9110K-EVB-E[200-800MHz]
Application Note: TA9110K EVB E

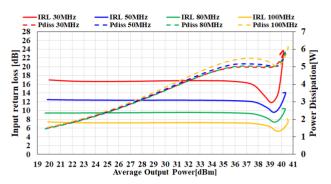


Figure 6.3.2. IRL and Pdiss vs P_{OUT} of TA9110K-EVB-E[30-100MHz]

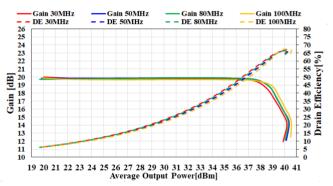


Figure 6.3.4. Gain and DE vs P_{OUT} of TA9110K-EVB-E[30-100MHz]

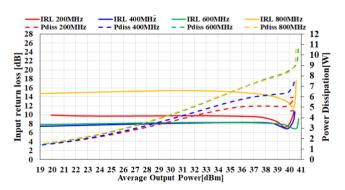


Figure 6.3.6. IRL and Pdiss vs P_{OUT} of TA9110K-EVB-E[200-800MHz]

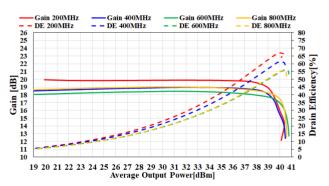


Figure 6.3.8. Gain and DE vs P_{OUT} of TA9110K-EVB-E[200-800MHz]

Edition Revision 1.1 - 2023-09-15

Published by

Tagore Technology Inc.

601 W Campus Dr. Ste C1

Arlington Heights, IL 60004, USA

©2020 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Technology assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Technology. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Technology: support@tagoretech.com.