

TSL8029N

Single Channel 2 – 5GHz 100Watt Receiver Front End for MACRO base station

Application Note: TSL8029N EVB A

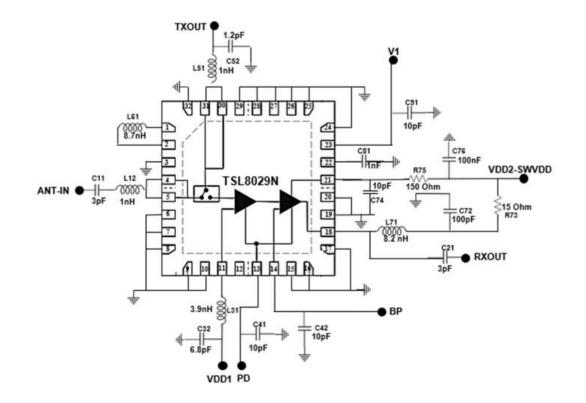
Application Note 2300MHz~2700MHz 5V 90mA [RX-HG] 5V 50mA [RX-LG] 5V 200uA [TX]

Rev-1.0

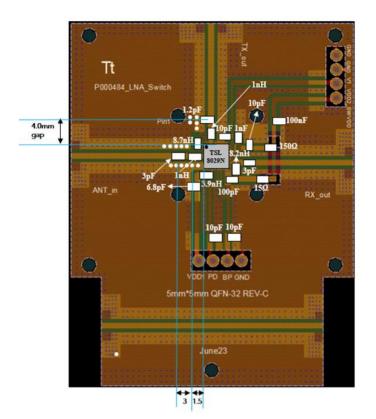
List of Contents

1	General Description
2	TSL8029N-EVB-A Board Details
3	TSL8029N-EVB-A Bill of Material
4	TSL8029N-EVB-A Biasing sequence
5	TSL8029N-EVB-A Board Measurement Summary
6	TSL8029N-EVB-A Board Measurement Results

1. General Description


The TSL8029N is a single-channel, integrated RF, front-end, multichip module designed for different applications. The device operates from 2 GHz to 5GHz. The TSL8029N is configured with a cascading, two-stage, GaAs LNA and a GaN based SPDT switch.

In high gain mode, the cascaded two-stage LNA and switch offer a low noise figure of 1.4 dB and a high gain of 33 dB at 3.6 GHz with an output third-order intercept point (OIP3) of 33 dBm (typical) at high gain mode. In low gain mode, one stage of the two-stage LNA is in bypass, providing 14.5 dB of gain at a lower current of 50 mA. In power-down mode, the LNAs are turned off and the device draws 4 mA.


In transmit operation, when RF inputs are connected to a termination pin (TX), the switch provides low insertion loss of 0.5 dB at 3.6GHz and handles long-term evolution (LTE) average power (8 dB peak to average ratio (PAR)) of 50 dBm for full lifetime operation.

The device comes in an RoHS compliant, compact, 5 mm × 5 mm, 32-lead LFCSP.TSL8029N EVB-A is tuned for 2.3G-2.7GHz.

2. TSL8029N-EVB-A Board Details

Note: Series cap on ANT and TX ports should have 250V voltage ratings to handle 100W power. The heatsink needs to be added at bottom of this board for proper power spreading.

Figure 2.1 TSL8029N-EVB-A 2300MHz ~ 2700MHz Schematic and EVB Layout

3. TSL8029N-EVB-A Bill of Material

Component ID	Value	Manufacturer	Recommended Part Number	Qty
C11, C21	3 pF	Murata 600S3R0BT250XT		2
L12, L51	1 nH	1 nH Coil craft 0402DC-1N0XJRW		2
L31	3.9 nH	Coil craft	0402DC-3N9XGRW	1
C32	6.8 pF	Murata GJM1555C1H6R8BB01D		1
C41, C42, C74, C91	10pF	Murata GJM1555C1H100JB01D		4
C52	1.2pF	Murata	600S1R2BT250XT	1
L61	8.7nH	Coil craft	0402HP-8N7XGRW	1
L71	8.2nH	8.2nH Coil craft 0402HP-8N2XGRW		1
C72	100 pF	100 pF AVX 04025A101JAT4A		1
R73	15 Ω	Panasonic	ERJ-H2RD15R0X	1
R75	150 Ω	Panasonic	ERJ-2RHD1500X	1
C76	100 nF	TDK	C1005X7R1H104K050BE	1
C81	1 nF	Murata	04025C102JAT2A	1
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

Table 3.1 TSL8029N-EVB-A BOM

4. TSL8029N-EVB-A Biasing Sequence

Turn ON Device	Turn OFF Device			
 Apply bias to the VDD2_SWVDD and	 Turn RF power off. Turn off VDD2_SWVDD and VDD1=5V test			
VDD1=5V test points. Apply bias to the V1 test point. Apply bias to the Vdd1 test point. Apply bias to the BP test points. Apply bias to the PD test point. Apply an RF input signal.	points. Turn off V1, BP and PD			

Table 4.1 TSL8029N-EVB-A Bias and Sequencing

5. TSL8029N-EVB-A Board Measurement Summary

Frequency (MHz)	Mode	S21 (dB)	S11 (dB)	S22 (dB)	EVB Noise Figure(dB)	OP1dBm	OIP3dBm
2300	RX	14.5	-8.5	-4.1	1.2	16	28.2
2400	Low	14.4	-8.9	-4.2	1.2	16	26.2
2500	Gain	14.4	-9.6	-4.7	1.2	15.5	30
2600		14.0	-9.8	-5.3	1.2	15	23
2700		13.9	-9.8	-5.5	1.2	14	24
2300	RX	33.9	-9.3	-9.5	1.2	20	30.5
2400	High	33.8	-9.9	-9.3	1.2	21	30.3
2500	Gain	34.0	-10.6	-8.8	1.2	21	30.3
2600		33.9	-11	-8.7	1.2	21	29.5
2700		33.9	-11.0	-8.4	1.2	21.2	31.5
2300	тх	-0.7	-15.5	-13.9			
2400		-0.8	-14.7	-12.8			
2500		-0.8	-13.5	-12.6			
2600		-0.9	-13.0	-11.0			
2700		-0.9	-12.1	-11.1			

Table 5.1 TSL8029N-EVB-A Electrical Characteristics Summary

6. TSL8029N-EVB-ATest Results

All the tests are carried out at room temperature.

6.1. <u>S parameters</u>

Figure 6.1.1. S parameters of TSL8029N-EVB-A RX-LG 5V 50mA

Figure 6.1.2. S parameters of TSL8029N-EVB-A RX-HG 5V 90mA

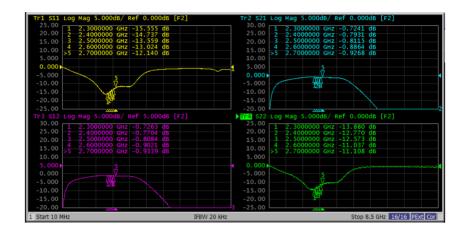


Figure 6.1.3. S parameters of TSL8029N-EVB-A TX

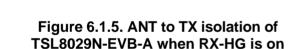
000

0.000

-5.000

-25.00

-30.00


-35.00

-40.00

45.00

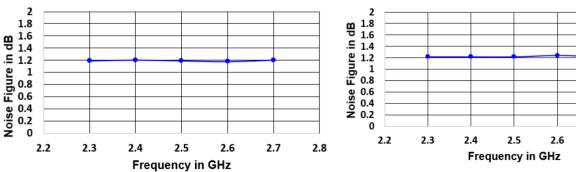
Figure 6.1.4. ANT to TX isolation of TSL8029N-EVB-A when RX-LG is on

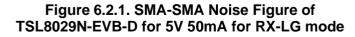
GHZ

GHZ GHZ

GHZ

4000000


000000


00000 GHZ 411

914 967 355 804 dB dB dB dB dB

-39. -30.

6.2. SMA-SMA Noise Figure Test Results

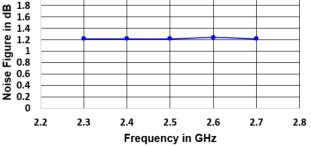
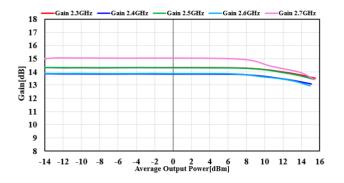
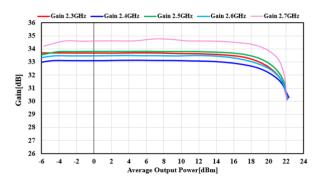



Figure 6.2.2. SMA-SMA Noise Figure of TSL8029N-EVB-D for 5V 90mA for RX-HG mode


**Note: The trace loss is within the range of 0.2dB, resulting in a de-embedded NF of 1dB

6.3. Large Signal Test Results

Figure 6.3.1. Gain vs P_{OUT} of TSL8029N-EVB-A for 5V 50mA for RX-LG mode

Figure 6.3.1. Gain vs P_{OUT} of TSL8029N-EVB-A for 5V 90mA for RX-HG mode

6.4. OIP3 Test Results

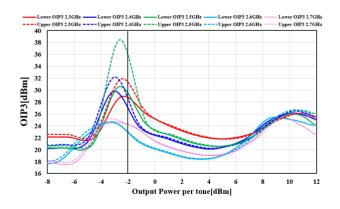


Figure 6.4.1 OIP3dBm vs P_{OUT} /tone of TSL8029N-EVB-A for 5V 50mA for RX-LG mode

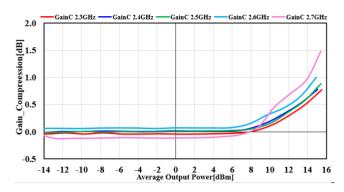


Figure 6.3.2 Gain compression vs P_{OUT} of TSL8029N-EVB-A for 5V 50mA for RX-LG mode

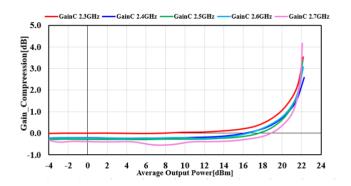


Figure 6.3.2 Gain compression vs P_{OUT} of TSL8029N-EVB-A for 5V 90mA for RX-HG mode

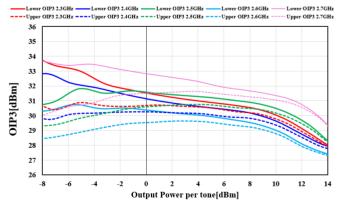


Figure 6.4.2 OIP3dBm vs P_{OUT} /tone of TSL8029N-EVB-A for 5V 90mA for RX-HG mode

Edition Revision 1.0 - 2023-11-15

Published by

Tagore Technology Inc.

601 W Campus Dr. Ste C1

Arlington Heights, IL 60004, USA

©2020 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Technology assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Technology. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Technology: support@tagoretech.com.