

TSL8029N

Single Channel 2 – 5GHz 100Watt Receiver Front End for MACRO base station

Application Note: TSL8029N EVB C

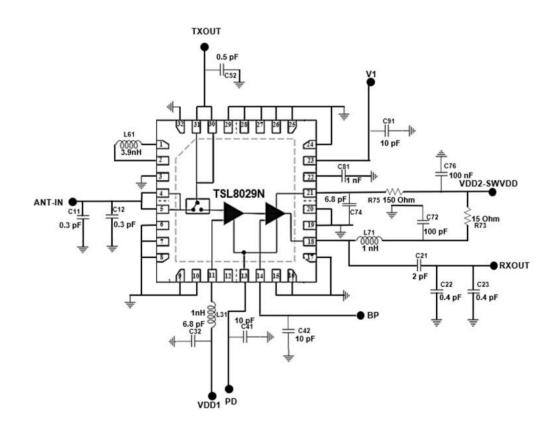
Application Note 3300MHz~4200MHz 5V 90mA [RX-HG] 5V 50mA [RX-LG] 5V 200uA [TX]

Rev-1.0

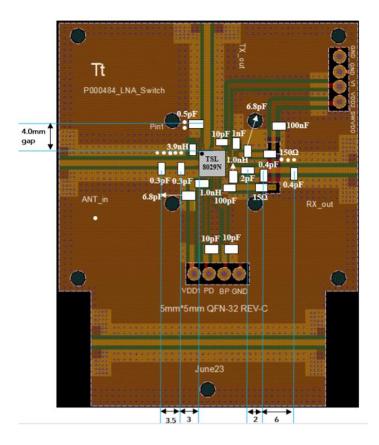
List of Contents

1	General Description
2	TSL8029N-EVB-C Board Details
3	TSL8029N-EVB-C Bill of Material
4	TSL8029N-EVB-C Biasing sequence
5	TSL8029N-EVB-C Board Measurement Summary
6	TSL8029N-EVB-C Board Measurement Results

1. General Description


The TSL8029N is a single-channel, integrated RF, front-end, multichip module designed for different applications. The device operates from 2 GHz to 5GHz. The TSL8029N is configured with a cascading, two-stage, GaAs LNA and a GaN based SPDT switch.

In high gain mode, the cascaded two-stage LNA and switch offer a low noise figure of 1.4 dB and a high gain of 33 dB at 3.6 GHz with an output third-order intercept point (OIP3) of 33 dBm (typical) at high gain mode. In low gain mode, one stage of the two-stage LNA is in bypass, providing 14.5 dB of gain at a lower current of 50 mA. In power-down mode, the LNAs are turned off and the device draws 4 mA.


In transmit operation, when RF inputs are connected to a termination pin (TX), the switch provides low insertion loss of 0.5 dB at 3.6GHz and handles long-term evolution (LTE) average power (8 dB peak to average ratio (PAR)) of 50 dBm for full lifetime operation.

The device comes in an RoHS compliant, compact, 5 mm × 5 mm, 32-lead LFCSP.TSL8029N EVB-C is tuned for 3.3G-4.2GHz.

2. TSL8029N-EVB-C Board Details

Note: Series cap on ANT and TX ports should have 250V voltage ratings to handle 100W power. The heatsink needs to be added at bottom of this board for proper power spreading.

Figure 2.1 TSL8029N-EVB-C 3300MHz ~ 4200MHz Schematic and EVB Layout

3. TSL8029N-EVB-C Bill of Material

Component ID	Value	Manufacturer	Recommended Part Number	Qty
C11, C12	0.3 pF	Murata 600S0R3BT250XT		2
C21	2 pF	Murata GJM1555C1H2R0BB01D		1
C22, C23	0.4 pF	Murata	GJM1555C1HR40BB01J	2
L31, L71	1 nH	Coil craft	0402DC-1N0XJRW	2
C32, C74	6.8 pF	Murata GJM1555C1H6R8BB01D		2
C41, C42, C91	10pF	Murata GJM1555C1H100JB01D		3
C52	0.5pF	Murata 600S0R5BT250XT		1
L61	3.9 nH	Coil craft 0402DC-3N9XGRW		1
C72	100 pF	AVX 04025A101JAT4A		1
R73	15 Ω	Panasonic ERJ-H2RD15R0X		1
R75	150 Ω	Panasonic ERJ-2RHD1500X		1
C76	100 nF	TDK C1005X7R1H104K050BE		1
C81	1 nF	Murata 04025C102JAT2A		1
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

Table 3.1 TSL8029N-EVB-C BOM

4. TSL8029N-EVB-C Biasing Sequence

Turn ON Device	Turn OFF Device			
 Apply bias to the VDD2_SWVDD and	 Turn RF power off. Turn off VDD2_SWVDD and VDD1=5V test			
VDD1=5V test points. Apply bias to the V1 test point. Apply bias to the Vdd1 test point. Apply bias to the BP test points. Apply bias to the PD test point. Apply an RF input signal.	points. Turn off V1, BP and PD			

Table 4.1 TSL8029N-EVB-C Bias and Sequencing

5. TSL8029N-EVB-C Board Measurement Summary

Frequency (MHz)	Mode	S21 (dB)	S11 (dB)	S22 (dB)	EVB Noise Figure(dB)	OP1dBm	OIP3dBm
3300	RX Low Gain	13.8	-13.1	-6.9	1.5	12	22
3600		14.1	-15.9	-9.2	1.5	12.3	20
3900		13.4	-19.1	-8.8	1.5	11	22
4200		12.7	-24.8	-9	1.5	10.8	20
3300	RX High	32.4	-10.6	-7.2	1.5	20	31
3600		32.3	-10.6	-9	1.5	20.8	32
3900	Gain	30.8	-12.4	-16	1.5	19	33
4200		29.5	-14.9	-25.9	1.6	19.2	37
3300		-0.7	-17.1	-15.7			
3600	ТХ	-0.7	-19.6	-18.1			
3900		-0.7	-24.4	-20.2			
4200		-0.7	-22.9	-17.5			

Table 5.1 TSL8029N-EVB-C Electrical Characteristics Summary

6. TSL8029N-EVB-C Test Results

All the tests are carried out at room temperature.

6.1. S parameters

Figure 6.1.1. S parameters of TSL8029N-EVB-C RX-LG 5V 50mA

Figure 6.1.2. S parameters of TSL8029N-EVB-C RX-HG 5V 90mA

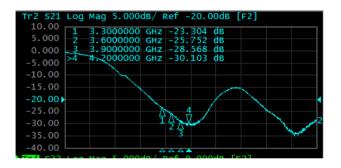
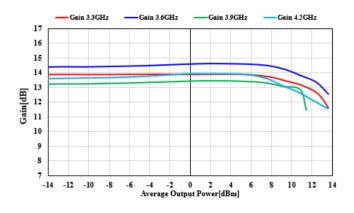
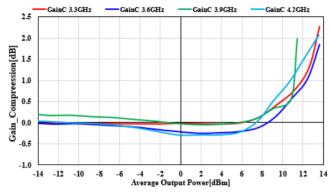


Figure 6.1.4. ANT to TX isolation of TSL8029N-EVB-C when RX-LG is on Figure 6.1.5. ANT to TX isolation of TSL8029N-EVB-C when RX-HG is on

mode

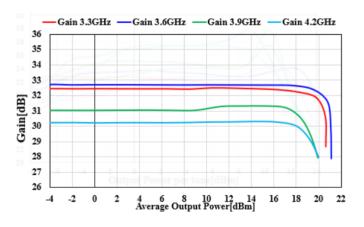
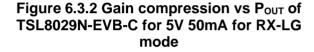
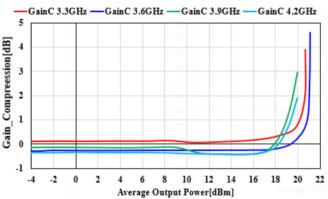
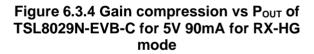
6.2. SMA-SMA Noise Figure Test Results

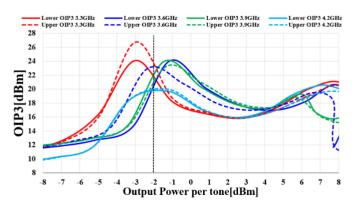

**Note: The trace loss is within the range of 0.2dB, resulting in a de-embedded NF of 1.3 to 1.4dB

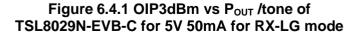

Application Note: TSL8029N EVB C

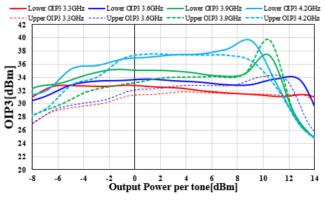
mode

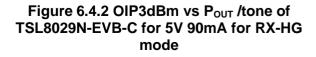
6.3. Large Signal Test Results


Figure 6.3.3. Gain vs P_{OUT} of TSL8029N-EVB-C for 5V 90mA for RX-HG mode



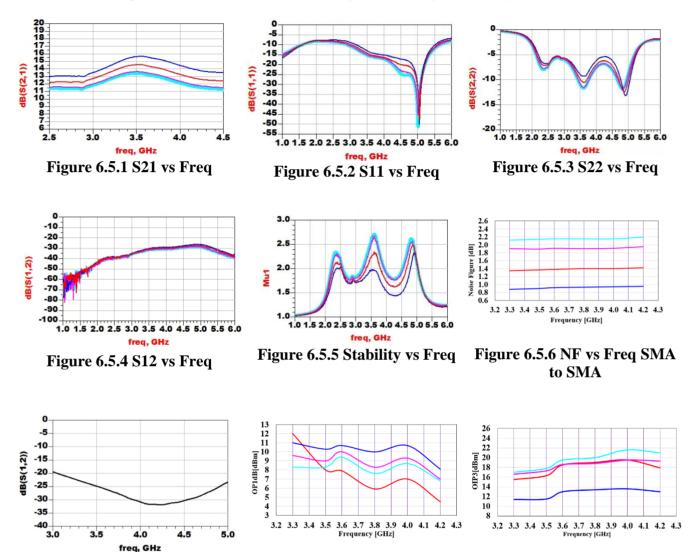




6.4. OIP3 Test Results

6.5. Temperature Test Data

Receive Operation, Low Gain Mode, 25degreeC -40degreeC 85degreeC 105degreeC.



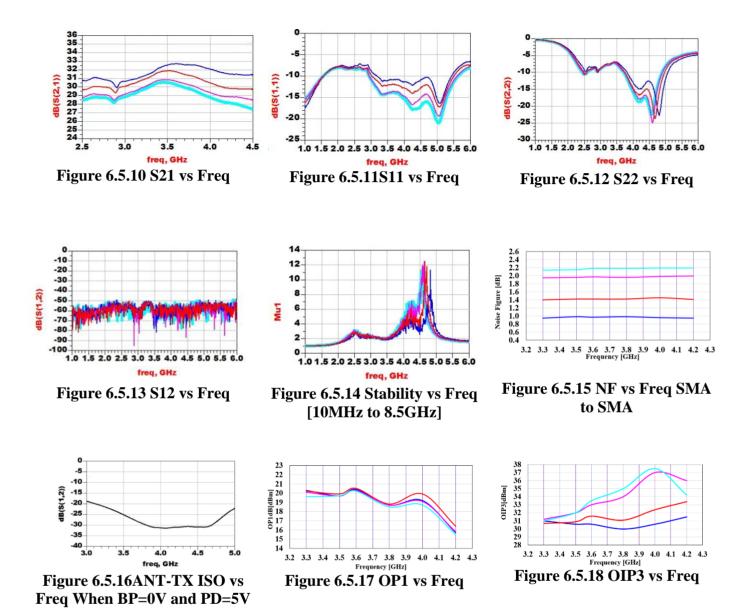
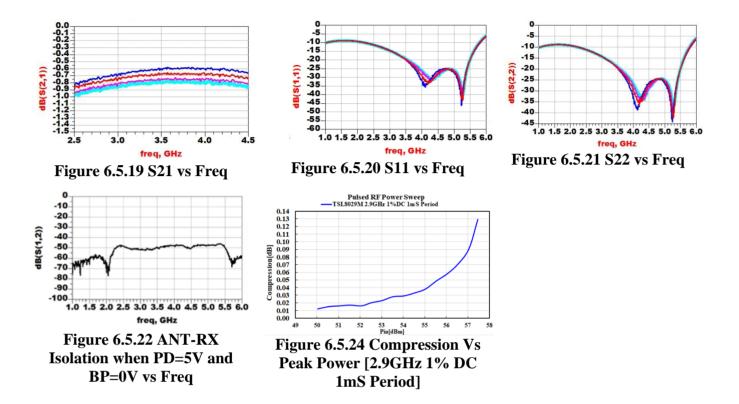

Figure 6.5.7 ANT-TX ISO vs Freq When BP=5V and PD=0V

Figure 6.5.8 OP1 vs Freq

Figure 6.5.9 OIP3 vs Freq



Receive Operation, High Gain Mode, 25degreeC -40degreeC 85degreeC 105degreeC.

Transmit Operation, 25degreeC -40degreeC 85degreeC 105degreeC.

Edition Revision 1.0 - 2023-11-15

Published by

Tagore Technology Inc.

601 W Campus Dr. Ste C1

Arlington Heights, IL 60004, USA

©2020 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Technology assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Technology. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Technology: support@tagoretech.com.