

TA9110K - 6 W CW, 30 - 4000 MHz GaN Power Transistor

1.0 Features

- Small signal gain @ 1000 MHz: 17 dB
- Large signal gain @ 1000 MHz: 14 dB
- PSAT @ 1000 MHz: 40 dBm
- PAE @ PSAT @ 1000 MHz: 55%
- 28 − 32 V Typical operations
- Operating frequency: 30 MHz to 4.0 GHz

2.0 Applications

- Private mobile radio handsets
- Public safety radios
- Cellular infrastructure
- Military radios

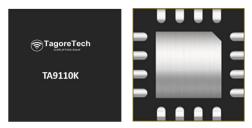


Figure 1.1 Device Image (16 Pin 3 × 3 × 0.75 mm QFN Package)

RoHS/REACH/Halogen Free Compliance

3.0 Description

The TA9110K is a broadband GaN power transistor capable of delivering 6 W CW from 30 MHz to 4.0 GHz frequency band. The transistor can be used at lower frequencies with reduced output power. The input and output can be matched for best power and efficiency for the desired band.

The TA9110K is packaged in a compact, low-cost Quad Flat No lead (QFN) 3 x 3 x 0.75 mm, 16 leads plastic package.

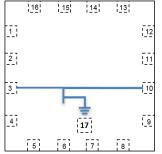


Figure 3.1 Function Block Diagram (Top View)

4.0 Ordering Information

Table 4.1 Ordering Information

Base Part Number	Package Type	Form	Qty	Reel Diameter	Reel Width	Orderable Part Number	
TA9110K	16 Pin 3 × 3 × 0.75 mm QFN	Tape and Reel	3000	13" (330 mm)	18 mm	TA9110KMTRPBF	
	Tuned Evaluation Board, 30 – 2700 MHz						
	TA9110K-EVB-B						
	TA9110K-EVB-C						
	TA9110K-EVB-D						
	TA9110K-EVB-E						
Tuned Evaluation Board, 950 – 1800 MHz						TA9110K-EVB-F	
	TA9110K-EVB-G						

5.0 Absolute Maximum Ratings

Table 5.1 Absolute Maximum Ratings @T_A=+25°C Unless Otherwise Specified

Parameter	Symbol	Value	Unit				
Electrical Ratings							
Breakdown voltage	V _{DS}	+120	V				
Gate voltage	V _{GS}	-10 to +2.0	V				
Drain current	I _{DS}	0.75	Α				
Gate current	I _{GS}	2.1	mA				
Power dissipation CW	P _{diss}	12	W				
RF input power CW, @1000MHz	RFIN	28	dBm				
Storage Temperature Range	T _{st}	-55 to +150	°C				
Operating Temperature Range	Top	-40 to +85	°C				
Maximum Junction Temperature	TJ	+225	°C				
Thermal Ra	itings						
Thermal Resistance (junction-to-case) – Bottom side	R _{θJC}	8.9	°C/W				
Soldering Temperature	T _{SOLD}	260	°C				
ESD Rati	ngs						
Human Body Model (HBM)	Level 1A	250 to <500	V				
Charged Device Model (CDM)	Level C1	250 to <500	V				
Moisture Rating							
Moisture Sensitivity Level	MSL	1	-				

Attention:

Maximum ratings are absolute ratings. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding one or a combination of the absolute maximum ratings may cause permanent and irreversible damage to the device and/or to surrounding circuit.

6.0 Pin Description

Table 6.1 Pin Definition

Pin Number Pin Name		Description
1,2, 4-9, 11-16	NC	No internal connection, can be connected to ground
3	V _{GG} & RF _{IN}	Gate voltage and RF input
10	V _{DD} & RF _{OUT}	Drain voltage and RF output
17 ^[1]	Paddle/Slug	Ground

Note: [1] The backside ground slug of the device must be grounded directly to the ground plane through multiple vias to ensure proper operation. Adequate heatsinking required.

7.0 RF Electrical Specifications

Table 7.1 Electrical Specifications @T_A=+25°C Unless Otherwise Specified;

Parameter	Condition	Minimum	Typical	Maximum	Unit
Small Signal Gain	1000 MHz		17		dB
Large Signal Gain	Pout = 38 dBm, 1000 MHz		14		dB
P _{SAT}	1000 MHz		40		dBm
Power Added Efficiency (PAE)	$P_{OUT} = 38 \text{ dBm}$		46		%
Drain Voltage			32		V
Ruggedness	All phase, P _{OUT} = 38 dBm		VSWR :	= 10:1	

Note: Data taken from 30 – 2700 MHz broadband reference design (EVB), V_D=+32 V; I_{DQ}=40 mA, CW

8.0 Recommended Operating Conditions

Table 8.1 Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Drain Voltage	V_{DD}	+12	+32	+34	V
Gate Voltage	V_{GG}	-3.0	-2.55	-2.4	V
Drain Bias Current	IDQ		40		mΑ
Drain Current	Ips		500		mΑ
Power Dissipation CW [1]	P _{diss} @ 38 dBm Pout			10	W
Operating Temperature Range		-40	+25	+85	°C

Note: [1] @TC = +85°C

9.0 Bias and Sequencing

Table 9.1 Bias and Sequencing

Turn ON Device	Turn OFF Device		
1. Set V _G to -5 V	1. Turn RF power off		
2. Set V _D to +32 V	2. Turn off V _D		
3. Adjust V _G to reach required I _{DQ} current	3. Turn off V _G		
4. Apply RF power			

10.0 Typical Characteristics

10.1 30 - 2700 MHz EVB A (Vd=32 V, I_{DQ}=40 mA, CW, T_A=+25°C)

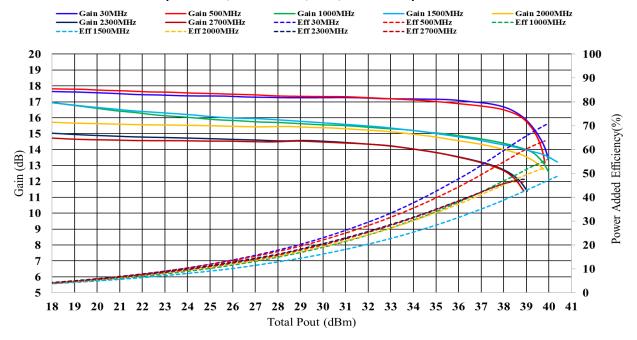


Figure 10.1.1 Gain and PAE vs Pout (30-2700 MHz)

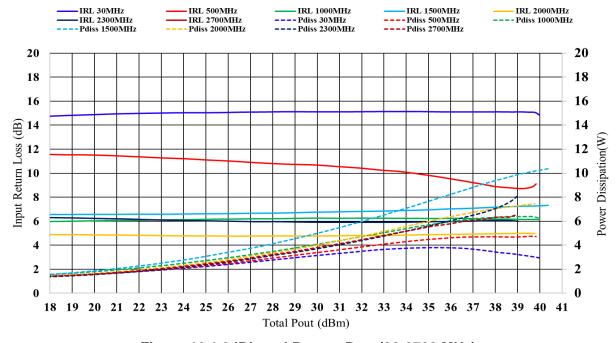


Figure 10.1.2 IRL and P_{diss} vs P_{OUT} (30-2700 MHz)

10.2 30 - 2700 MHz EVB A (Vd=32 V, I_{DQ}=40 mA, LTE, 8 dB PAPR, 4.515 MHz BW, T_A=+25°C)

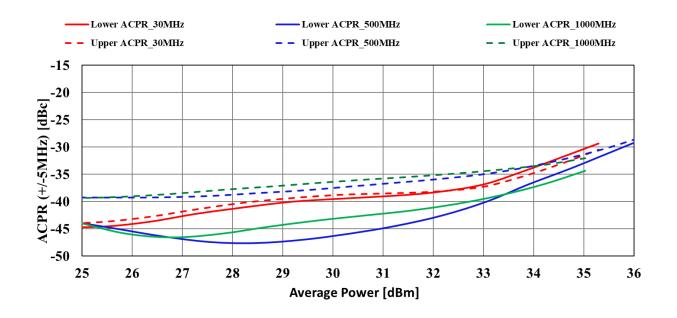


Figure 10.2.1 ACPR vs Pout (30-1000 MHz)

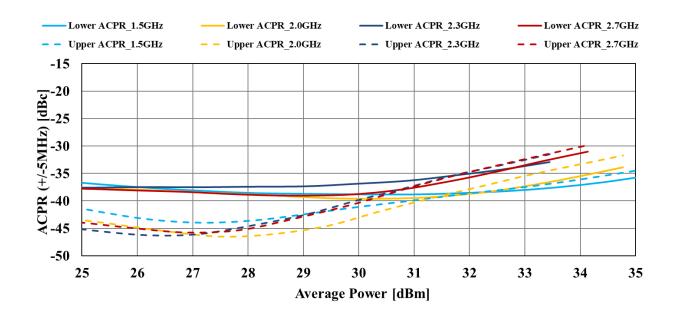


Figure 10.2.2 ACPR vs P_{OUT} (1500-2700 MHz)

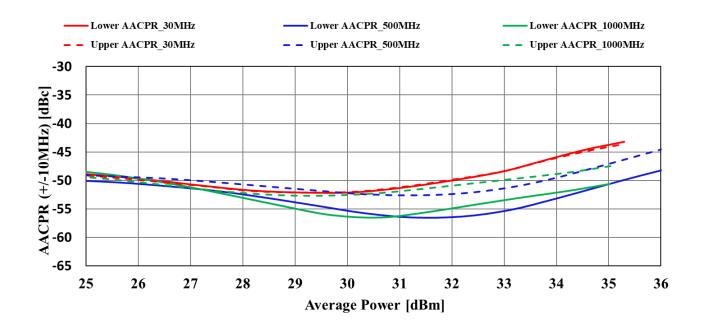


Figure 10.2.3 AACPR vs Pout (30-1000 MHz)

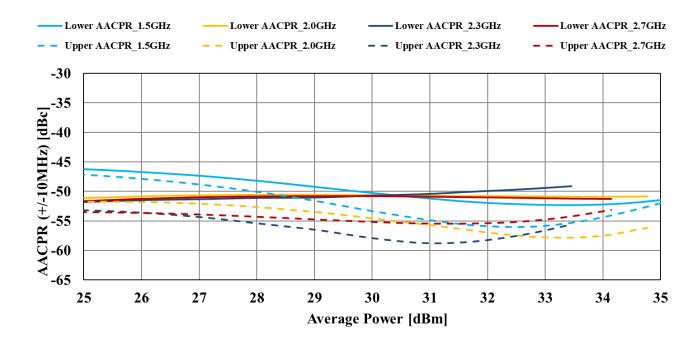


Figure 10.2.4 AACPR vs P_{OUT} (1500-2700 MHz)

10.3 30 – 2700 MHz EVB A (Vd=32 V, I_{DQ}=40 mA, CW, Over Temp -40°C to +85°C)

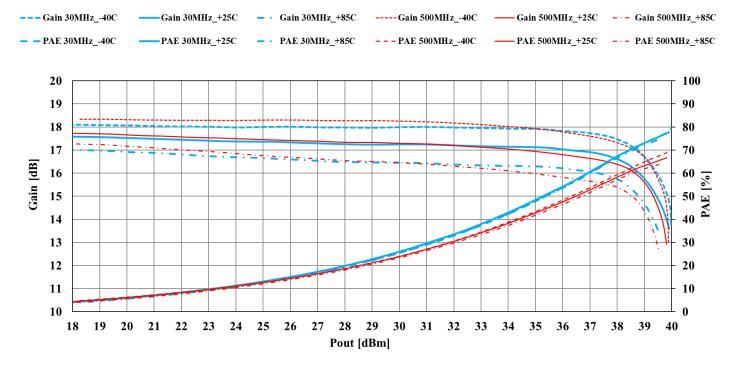


Figure 10.3.1 Gain and PAE vs Pout (30-500 MHz)

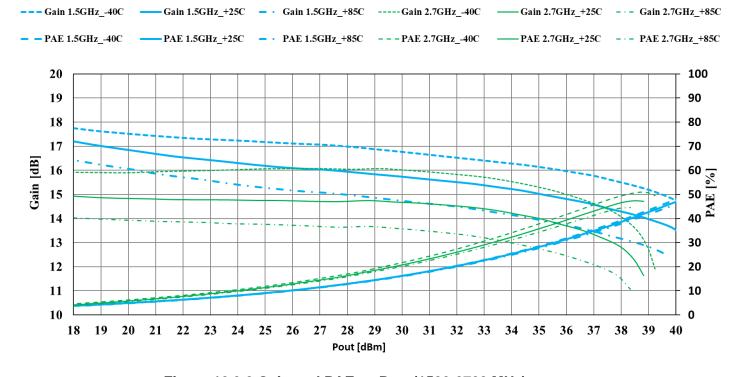


Figure 10.3.2 Gain and PAE vs Pout (1500-2700 MHz)

11.0 Evaluation Boards

11.1 30 - 2700 MHz EVB A

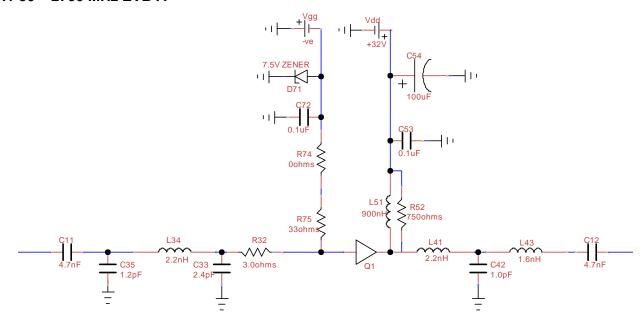
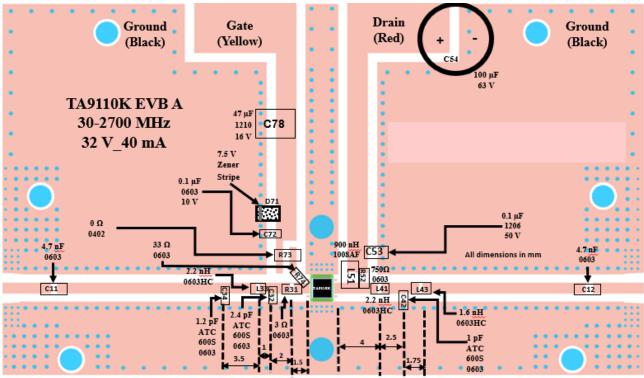



Figure 11.1.1 Schematic of the 30 - 2700 MHz EVB A

All passive components and board cuts must be located exactly as shown, relative to the via holes, shown as blue or (gray) dots. First, place D71 & then C72 before doing anything else to the board.

Figure 11.1.2 Board Layout of the 30 - 2700 MHz EVB A

Table 11.1.1 BOM of the 30 - 2700 MHz EVB A

Component ID	Value	Manufacturer	Recommended Part Number
C11,12	4.7 nF, 50 V	Murata	GRM1885C1H472JA01D
R31	3 Ω	Vishay	RCS06033R00FKEA
C32	2.4 pF	AVX	600S2R4CT250XT
L33, L41	2.2 nH	Coil craft	0402HP-2N2XJE
C34	1.2 pF	AVX	600S1R2CT250XT
C42	1 pF	AVX	600S1R0CT250XT
L43	1.6 nH	Coil craft	0603HC-1N6XGLW
L51	900 nH	Coil craft	1008AF-901XJLC
R52	750 Ω	Vishay	CRCW0603750RFKEB
C53	0.1 μF, 50 V	Murata	GRM31C5C1H104JA01L
C54	100 μF, 63 V	Nichicon	UPW1J101MPD1TD
D71	7.5 V Zener	On Semiconductor	MMSZ5236BT1G
C72	0.1 μF, 10 V	AVX	0603ZC104K4T2A
R73	0 Ω	Vishay	CRCW06030000Z0EAC
R74	33 Ω	ROHM Semiconductor	ESR03EZPJ330
R78	47 μF, 16 V	Murata	GRM32ER61C476ME15L
Q1	6 W GaN Transistor	Tagore Tech	TA9110K
Р	PCB Rogers RO4350B, 20 mils, 2 oz		

Note: Please refer to the application notes on our website for details about the EVBs mentioned above, as well as the additional EVBs listed in Table 4.1.

12.0 Device Package Information

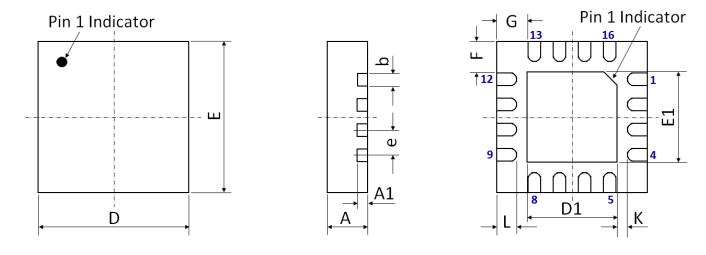


Figure 12.1 Device Package Drawing

(All dimensions are in mm)

Table 12.1 Device Package Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
Α	0.750	±0.05	Е	3.00 BSC	±0.05
A1	0.203	±0.02	E1	1.70	±0.05
b	0.25	+0.05/-0.07	F	0.625	±0.05
D	3.00 BSC	±0.05	G	0.625	±0.05
D1	1.70	±0.05	L	0.25	±0.05
е	0.50 BSC	±0.05	K	0.40	±0.05

Note: Lead finish: Pure Sn without underlayer; Thickness: 7.5 μm ~ 20 μm (Typical 10 μm ~ 12 μm)

Attention:

Please refer to application notes *TN-001* and *TN-002* at http://www.tagoretech.com for PCB and soldering related guidelines.

13.0 PCB Land Design

Guidelines:

- [1] 2-layer PCB is recommended
- [2] Via diameter is recommended to be 0.3 mm to prevent solder wicking inside the vias
- [3] Thermal vias shall only be placed on the center pad and should be filled/plugged with solder or copper
- [4] The maximum via number for the center pad is $3(X)\times3(Y)=9$

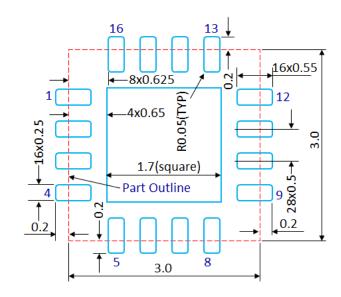


Figure 13.1 PCB Land Pattern

(Dimensions are in mm)

Figure 13.2 Solder Mask Pattern

(Dimensions are in mm)

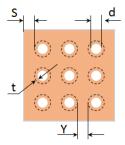


Figure 13.3 Thermal Via Pattern

(Recommended Values: S≥0.15 mm; Y≥0.20 mm; d=0.3 mm; Plating Thickness t=25 µm or 50 µm)

14.0 PCB Stencil Design

Guidelines:

- [1] Laser-cut, stainless steel stencil is recommended with electro-polished trapezoidal walls to improve the paste release.
- [2] Stencil thickness is recommended to be 125 µm.

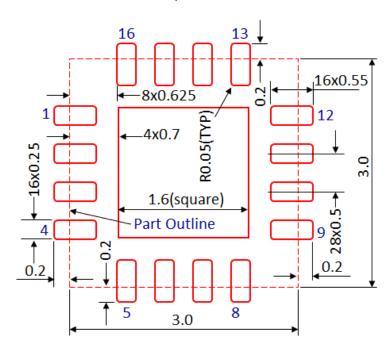


Figure 14.1 Stencil Openings (Dimensions are in mm)

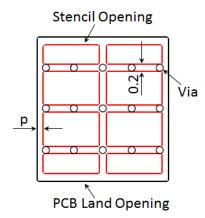
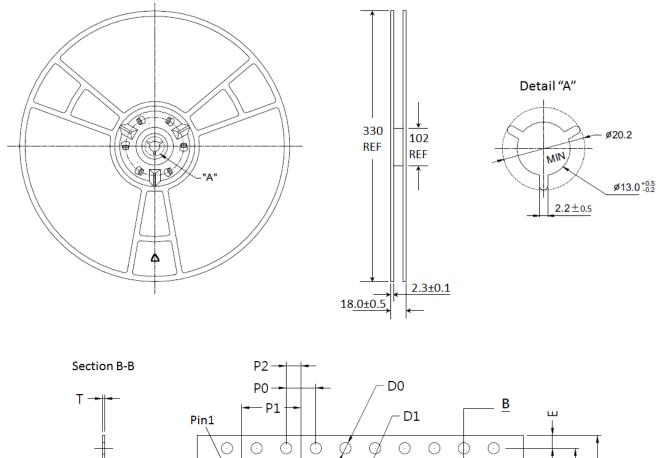



Figure 14.2 Stencil Openings Shall not Cover Via Areas If Possible (Dimensions are in mm)

15.0 Tape and Reel Information

R0.25

Figure 15.1 Tape and Reel Drawing

Table 15.1 Tape and Reel Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
A0	3.35	±0.10	K0	1.10	±0.10
В0	3.35	±0.10	P0	4.00	±0.10
D0	1.50	+0.10/-0.00	P1	8.00	±0.10
D1	1.50	+0.10/-0.00	P2	2.00	±0.05
E	1.75	±0.10	Т	0.30	±0.05
F	5.50	±0.05	W	12.00	±0.30

Edition Revision 2.5 - 2024-07-30

Published by

Tagore Tech Inc.

601 W Campus Dr. Ste C1

Arlington Heights, IL 60004, USA

©2024 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Tech assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Tech. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Tech: support@tagoretech.com.