

TA9110K 6 W CW 0.03 – 4.0 GHz GaN Power Transistor

Application Note: TA9110K EVB E

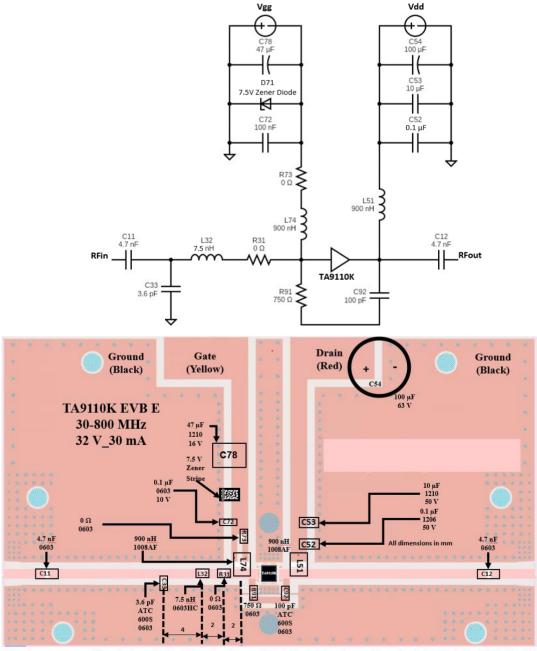
Application Note 30 MHz~800 MHz 32 V, 30 mA

Rev-2.1

Revision 2.1, 2024-07-30

List of Contents

1	General Description
2	TA9110K-EVB-E Board Details
3	TA9110K-EVB-E Bill of Material
4	TA9110K-EVB-E Biasing sequence
5	TA9110K-EVB-E Board Measurement Summary
6	TA9110K-EVB-E Board Measurement Results



1. General Description

The TA9110K is a broadband GaN power transistor capable of delivering 6 W CW from 30 MHz to 4.0 GHz frequency band. The transistor can be used at lower frequencies with reduced output power. The input and output can be matched for best power and efficiency for the desired band.

The TA9110K is packaged in a compact, low-cost Quad Flat No lead (QFN) 3 x 3 x 0.75 mm, 16 leads plastic package. TA9110K-EVB-E is tuned from 30 MHz to 800 MHz.

2. TA9110K-EVB-E Board Details

All passive components and board cuts must be located exactly as shown, relative to the via holes, shown as blue or (gray) dots. First, place D71 & then C72 before doing anything else to the board.

Figure 2.1 TA9110K-EVB-E 30 MHz ~ 800 MHz Schematic and EVB Layout

3. TA9110K-EVB-E Bill of Material

Component ID	Value	Manufacturer	Recommended Part Number	
C11, C12	4.7 nF, 50 V	Murata GRM1885C1H472JA01D		
R31, R73	0 Ω	Vishay	Vishay CRCW06030000Z0EAC	
L32	7.5 nH	Coil craft	0603HC-7N5XJLW	
C33	3.6 pF	AVX	600S3R6CT250XT	
L51, L74	900 nH	Coil craft	1008AF-901XKRC	
C52	0.1 µF, 10 V	AVX	0603ZC104K4T2A	
C53	10 µF, 50 V	Murata	GRM32ER71H106KA12L	
C54	100 µF, 63 V	Nichicon	UPW1J101MPD1TD	
D71	7.5 V Zener	On Semiconductor	MMSZ5236BT1G	
C72	0.1 µF, 10 V	AVX	0603ZC104K4T2A	
C78	47 µF, 16 V	Murata	GRM32ER61C476ME15L	
R91	750 Ω	Vishay	CRCW0603750RFKEB	
C92	100 pF	AVX	600S101GT250XT	
Q1	6 W GaN transistor	Tagore Tech	ТА9110К	
РСВ		Rogers RO4350B, 20 mils, 2 oz copper		

Table 3.1 TA9110K-EVB-E BOM

4. TA9110K-EVB-E Biasing Sequence

Turn ON Device	Turn OFF Device		
1. Set V_G to -5 V	1. Turn RF power off		
2. Set V_D to +32 V	2. Turn off V_D		
3. Adjust V_G to reach required I_{DQ} current	3. Turn off V _G		
4. Apply RF power			

Table 4.1 TA9110K-EVB-E Bias and Sequencing

5. <u>TA9110K-EVB-E Board Measurement Summary</u>

Frequency (MHz)	S21 Gain(dB)	S11(dB)	S22(dB)	Noise Figure	Psat(dBm)	PAE (%) @Psat
30	20.7	-14.0	-22.2	1.59	40.2	67
100	20.8	-14.1	-23.9	0.76	40.5	68
200	20.6	-12.0	-21.9	0.66	40.4	67
400	20.0	-9.5	-14.3	0.85	40.3	62
600	19.9	-10.4	-10.3	0.89	40.5	56
800	19.8	-18.3	-9.1	0.85	40.7	56

 Table 5.1 TA9110K-EVB-E 32 V, 30 mA Electrical Characteristics Summary

6. TA9110K-EVB-E Test Results

All the tests are carried out at room temperature.

6.1. S parameters

Figure 6.1.1. S parameters of TA9110K-EVB-E 32 V, 30 mA

6.2. SMA to SMA Noise Figure

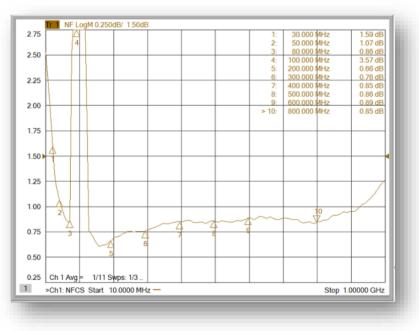


Figure 6.2.1. Noise Figure of TA9110K-EVB-E 32 V, 30 mA [Note: Measurement readings may exhibit spikes due to atmospheric signals, but please disregard them]

6.3. Large Signal Test Results

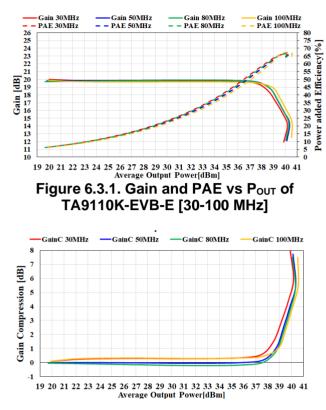
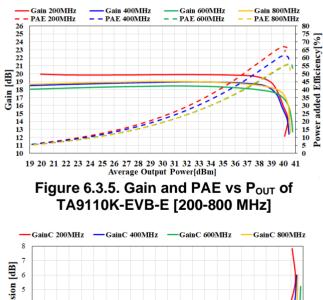



Figure 6.3.3. Gain Compression vs P_{OUT} of TA9110K-EVB-E [30-100 MHz]

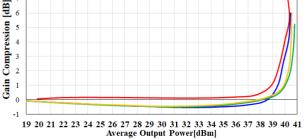


Figure 6.3.7. Gain Compression vs P_{OUT} of TA9110K-EVB-E [200-800 MHz]

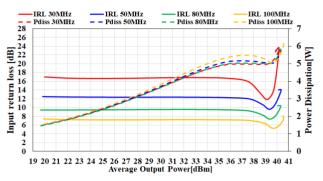


Figure 6.3.2. IRL and Pdiss vs P_{OUT} of TA9110K-EVB-E [30-100 MHz]

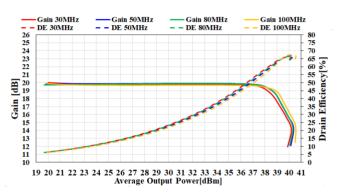


Figure 6.3.4. Gain and DE vs Pout of TA9110K-EVB-E [30-100 MHz]

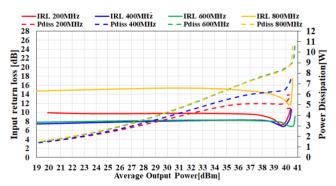


Figure 6.3.6. IRL and Pdiss vs P_{OUT} of TA9110K-EVB-E [200-800 MHz]

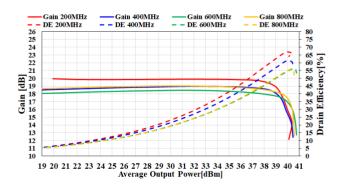


Figure 6.3.8. Gain and DE vs P_{OUT} of TA9110K-EVB-E [200-800 MHz]

Edition Revision 2.1 - 2024-07-30

Published by

Tagore Tech Inc.

601 W Campus Dr. Ste C1

Arlington Heights, IL 60004, USA

©2024 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Tech assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Tech. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Tech: support@tagoretech.com.