

TL0374J

0.03 – 3.0 GHz GaAs Ultra Low Noise Amplifier

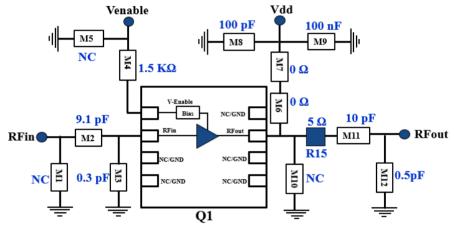
Application Note: TL0374J EVB F

Application Note 4400 MHz~5000 MHz 5 V, 55 mA

Rev-2.1

List of Contents

1	General Description
2	TL0374J-EVB-F Board Details
3	TL0374J -EVB-F Bill of Material
4	TL0374J -EVB-F Biasing sequence
5	TL0374J -EVB-F Board Measurement Summary
6	TL0374J -EVB-F Board Measurement Results



1. **General Description**

The TL0374J is a broadband, ultra-low Noise Amplifier (LNA) providing high gain and linearity. With a simple input and output match, this LNA can be tuned for different frequency bands targeting LTE (small cells and infrastructure) and any other applications requiring low noise, high gain, and linearity. For > 3 GHz frequency band, TL0375J can be considered. The TL0374J is packaged in a compact, low-cost Dual Flat No Lead (DFN) $2 \times 2 \times 0.75$ mm, 8 pin plastic package.

TL0374J-EVB-F is an evaluation board specially tuned for 5 V 55 mA for frequency range of 4400 MHz~5000 MHz applications. Its high gain, low noise performance makes it suitable.

2. TL0374J-EVB-F Board Details

R15 is the extra series cut that we made at output side RF line between M10 and M11 to α

R15 is the extra series cut that we made at output side RF line between M10 and M11 to accommodate 5 Ω resistor. Please note that we have used TL0375 EVB REV B for this application and device used is TL0374.

Figure 2.1 TL0374J-EVB-F 4400 MHz ~ 5000 MHz Schematic and EVB Layout

3. TL0374J-EVB-F Bill of Material

Component ID	Value	Manufacturer Recommended Part Number			
M2	9.1 pF	Murata GJM1555C1H3R0BB01			
M3	0.3 pF	Murata GJM1555C1HR30BB01			
M4	1.5 ΚΩ	Panasonic ERJ-2RKF1501X			
M6, M7	0 Ω	Panasonic ERJ-2GE0R00X			
M8	100 nF	TDK	C1005X7R1H104K050BE		
M9	100 pF	AVX	04025A101JAT4A		
M10	10 pF	Murata GJM1555C1H100JB01			
M12	0.5 pF	Murata GJM1555C1HR50BB0			
R15	5 Ω	KOA Speer	RK73H1ETTP4R99F		
Q1	GaAs LNA	Tagore Tech TL0374J			
PCB		Rogers RO4350B, 20 mils, 1 oz copper			

Table 3.1 TL0374J-EVB-F BOM

4. TL0374J-EVB-F Biasing Sequence

Turn ON Device	Turn OFF Device		
1. Set Venable to +5 V	1. Turn RF power off		
2. Set V _{DD} to +5 V	2. Turn off V _{DD}		
3. Device will draw required I _{DQ} current	3. Turn off Venable		
4. Apply RF power			

Table 4.1 TL0374J-EVB-F Bias and Sequencing

5. TL0374J-EVB-F Board Measurement Summary

Frequency (MHz)	EVB Noise figure (dB)	Gain(dB)	OP1 (dBm)	OIP3(dBm) Fspacing:1 MHz 0 dBm Pout/tone	S11(dB)	S22(dB)	Mu1
4400	0.8	14.2	16.8	35.0	-12.7	-11.6	1.5
4600	0.9	14.0	18.2	32.0	-14.0	-18.5	1.9
4800	0.8	13.7	15.8	33.8	-17.3	-23.3	1.9
5000	0.9	13.0	15.8	35.0	-24.3	-12.3	1.6

Table 5.1 TL0374J-EVB-F Electrical Characteristics Summary

6. TL0374J-EVB-F Test Results

All the tests are carried out at room temperature.

6.1. S parameters

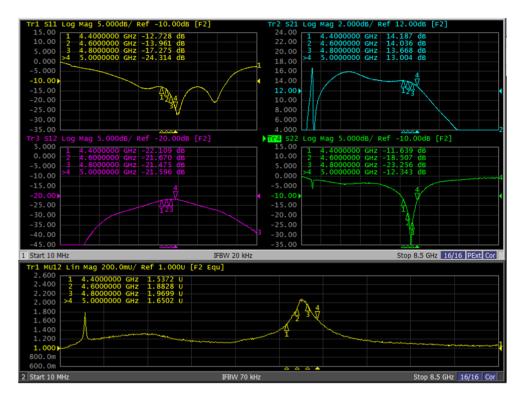


Figure 6.1.1. S parameters of TL0374J-EVB-F

6.2. SMA-SMA Noise Figure

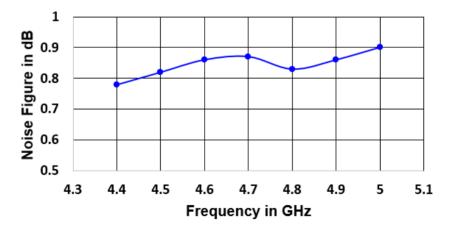


Figure 6.2.1. SMA-SMA Noise Figure of TL0374J-EVB-F

Note: The trace loss is within the range of 0.1 to 0.15 dB, resulting in a de-embedded NF of 0.7 to 0.8 dB.

6.3. Large Signal Test Results

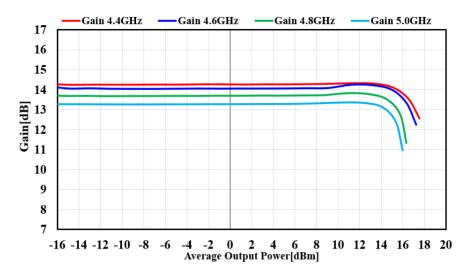


Figure 6.3.1. Gain Vs Pout of TL0374J-EVB-F

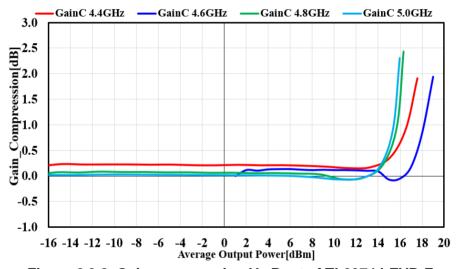


Figure 6.3.2. Gain compression Vs Pout of TL0374J-EVB-F

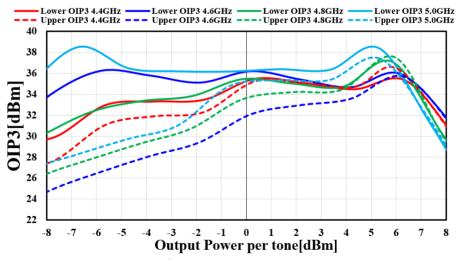


Figure 6.3.3. Output 3rd Order Intercept Point of TL0374J-EVB-F

Edition Revision 2.1 - 2024-07-30

Published by

Tagore Tech Inc.

601 W Campus Dr. Ste C1

Arlington Heights, IL 60004, USA

©2024 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Tech assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Tech. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Tech: support@tagoretech.com.