

TP0310K – 27 dBm (0.5 W) CW, 0.03 – 3.8 GHz Power Low Noise Amplifier

1.0 Features

- Small signal gain @ 1850 MHz: 16.5 dB
- NF @ 1850 MHz: 1.0 dB
- OP1dB @ 1850 MHz: 27.5 dBm
- OIP3dB @ 1850 MHz: 39 dBm
- 5 V Typical operating voltage
- Operating frequency: 0.03 to 3.8 GHz

2.0 Applications

- 4G/5G Infrastructure Radios
- Small Cells and Cellular Repeaters
- L, S band Phase Array Radar
- Mil/Comms Radios
- SDARS

3.0 Description

The TP0310K is a power Low Noise Amplifier (LNA) providing high gain and linearity. With a simple input and output match, this LNA can be tuned for different frequency bands targeting low noise, high power, and high linearity over 0.03-3.8 GHz frequency band.

At 1.85 GHz, the amplifier typically provides 16.5 dB gain, 27.5 dBm OP1, +39 dBm OIP3, and a 1.0 dB noise figure, while drawing 140-160 mA current from a +5 V supply.

The TP0310K is packaged in a compact, low-cost Dual Flat No Lead (QFN) 3 x 3 x 0.8 mm, 16 pin plastic package.

4.0 Ordering Information Table 4.1 Ordering Information

Base Part Number	Package Type	Form	Qty	Reel Diameter	Reel Width	Orderable Part Number
TP0310K	16 Pin 3 × 3 × 0.8 mm QFN	Tape & Reel	5000	13" (330 mm)	18 mm	TP0310KMTRPBF
	Tuned Evaluation Board, 1700 – 2000 MHz		Tuned Evaluation Board, 1700 – 2000 MHz TP0310K-EVB		TP0310K-EVB-A	
	Tuned Evaluation Board, 2500 – 2700 MHz		TP0310K-EVB-B			
	Tuned Evaluation	Board, 3300 - 3	3800 MF	lz		TP0310K-EVB-C
	Tuned Evaluation Board, 130 – 950 MHz		TP0310K-EVB-D			
Tuned Evaluation Board, 30 – 525 MHz		TP0310K-EVB-E				
	Tuned Evaluation	Board, 2900 - 3	3500 MH	lz		TP0310K-EVB-F

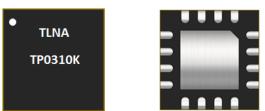
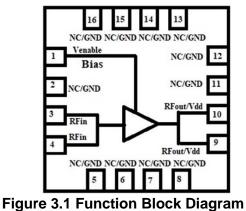



Figure 1.1 Device Image (16 Pin 3 × 3 × 0.8 mm QFN Package)

RoHS/REACH/Halogen Free Compliance

(Top View)

5.0 Pin Description

Table 5.1 Pin Definition

Pin Number	Pin Name	Description			
2,5-8, 11-16	NC	No internal connection, can be connected to ground			
1	Venable	Venable along with series resistor, sets the Idq. Venable <0.2V			
1	Venable	disables the device			
3,4	RFIN	RF Input. DC blocking cap required			
9,10	RF _{OUT} /V _{dd}	RF Output. Vdd supplied through an external choke inductor			
Package Base	Paddle/Slug	DC and RF Ground. Also provides thermal relief. Multiple vias are			
Fackage base	Faulte/Slug	recommended			

Note: [1] The backside ground slug of the device must be grounded directly to the ground plane through multiple vias to ensure proper operation. Adequate heat sinking required.

6.0 Absolute Maximum Ratings

Table 6.1 Absolute Maximum Ratings @T_A=+25°C Unless Otherwise Specified

Parameter	Symbol	Value	Unit				
Electrical Ra	tings						
Supply voltage, Venable	V _{dd}	+6	V				
Drain current	IDQ	150	mA				
RF input power CW	RFIN	23	dBm				
Storage Temperature Range	T _{st}	-55 to +150	°C				
Operating Temperature Range	T _{op}	-40 to +105	°C				
Maximum Junction Temperature	TJ	170	°C				
Thermal Rat	ings						
Thermal Resistance (junction-to-case) – Bottom side	R _{θJC}	10	°C/W				
Soldering Temperature	TSOLD	260	°C				
ESD Ratin	gs						
Human Body Model (HBM)	Level 1B	500 to <1000	V				
Charged Device Model (CDM)	Level C	≥1000	V				
Moisture Ra	Moisture Rating						
Moisture Sensitivity Level	MSL	1	-				

Attention:

Maximum ratings are absolute ratings. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding one or a combination of the absolute maximum ratings may cause permanent and irreversible damage to the device and/or to surrounding circuit.

7.0 Recommended DC Operating Conditions

Table 7.1 Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Drain Voltage	V _{DD}		+5.0		V
Venable Voltage	Venable		+5.0		V
Drain Bias Current	IDQ, Set by external resistor		140		mA
Venable Bias Current	bias		3.5	4	mA
Operating Temperature Range		-40	+25	+105	°C

8.0 Switching Time

Table 8.1 Switching time.

Parameter	Test Condition	Typical	Unit
Switching Rise Time	10/90% of the RF value	4	nsec
Switching Fall Time	10/90% of the RF value	1000	nsec

9.0 RF Electrical Specifications

Table 9.1 1700 – 2000 MHz EVB-A	@T _A =+25°C Unless Otherwise Specified; Venable = High
---------------------------------	---

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	Across Band		16-17		dB
Noise Figure	Across Band		1.0		dB
EVB Noise Figure	Across Band		1.05		dB
Input Return Loss	Across Band		11-14		dB
Output Return Loss	Across Band		10-13		dB
OP1dB	Across Band		27-27.5		dBm
OIP3	Across Band, 8 dBm per tone, Tone Spacing 2 MHz		39		dBm

Table 9.2 2500 – 2700 MHz EVB-B @T_A=+25°C Unless Otherwise Specified; Venable = High

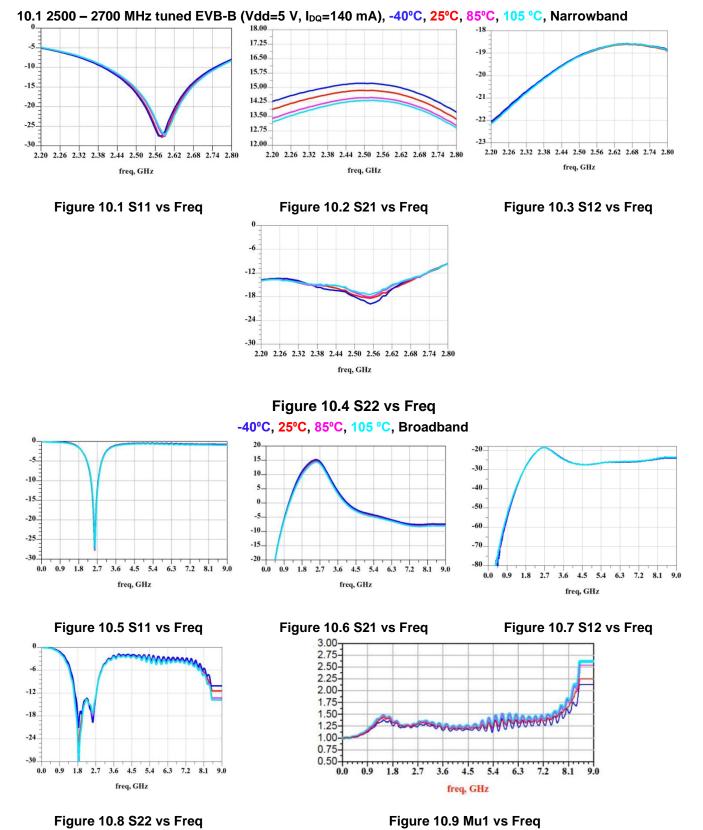
Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	2600MHz	13	14		dB
Noise Figure	2600MHz		1.1		dB
EVB Noise Figure	2600MHz		1.2		dB
Input Return Loss	2600MHz		16		dB
Output Return Loss	2600MHz		18		dB
OP1dB	2600MHz	25.5	27		dBm
OIP3	@ 2600 MHz, 8 dBm per tone, Tone Spacing 2 MHz	35	37		dBm

Table 9.3 3300 – 3800 MHz EVB-C @T _A =+25°C	Unless Otherwise Specified; Venable = High
---	--

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	Across Band		11-11.5		dB
Noise Figure	Across Band		0.85- 1.15		dB
EVB Noise Figure	Across Band		1-1.3		dB
Input Return Loss	Across Band		7-11		dB
Output Return Loss	Across Band		17-24		dB
OP1dB	Across Band		27.5		dBm
OIP3	Across Band, 8 dBm per tone, Tone Spacing 2 MHz		41-42		dBm

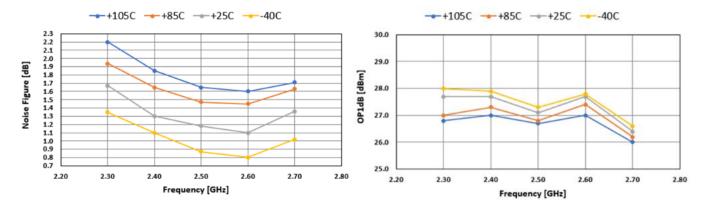
Table 9.4 130 – 950 MHz EVB-D @T_A=+25°C Unless Otherwise Specified; Venable = High

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	Across Band		27.6-21		dB
Noise Figure	Across Band		1.5-2.4		dB
EVB Noise Figure	Across Band		1.6-2.5		dB
Input Return Loss	Across Band		6-25		dB
Output Return Loss	Across Band		7-17		dB
OP1dB	Across Band		24.7-27		dBm
OIP3	Across Band, 8 dBm per tone, Tone Spacing 2 MHz		34-37		dBm

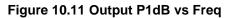

Table 9.5 30 – 525 MHz EVB-E @TA=+25°C Unless Otherwise Specified; Venable = High

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Gain	Across Band		24-21		dB
Noise Figure	Across Band		2.3-1.7		dB
EVB Noise Figure	Across Band		2.3-1.7		dB
Input Return Loss	Across Band		7-8		dB
Output Return Loss	Across Band		4-6		dB
OP1dB	Across Band		25-26.5		dBm
OIP3	Across Band, 16 dBm per tone, Tone Spacing 2 MHz		37-40		dBm

10.0 Typical Characteristics


TagoreTech

DISRUPTING SWaP



-40°C, 25°C, 85°C, 105 °C

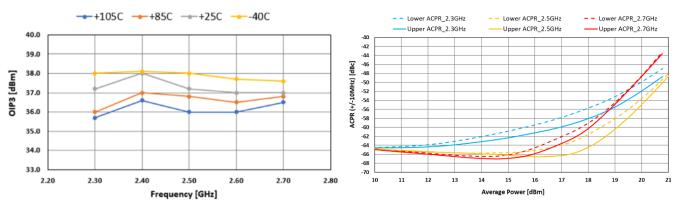


Figure 10.13 ACPR vs Average Power [8.8dB PAPR 10MHz BW]

11.0 Evaluation Boards

11.1 1700 - 2000 MHz EVB A

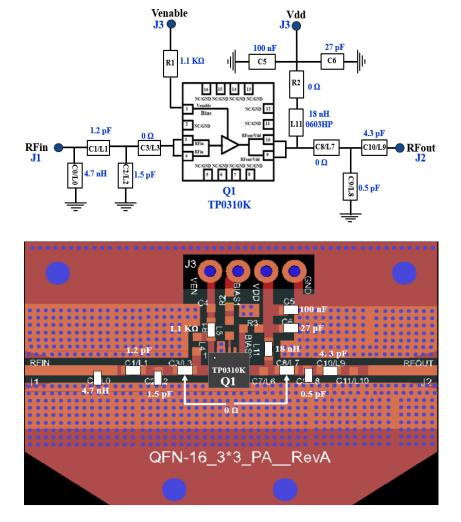
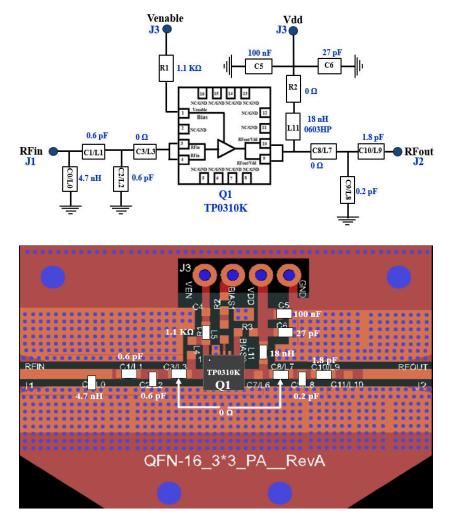


Figure 11.1 Schematic & Layout of the 1700 – 2000 MHz EVB A

Table 11.1 BOM of the 1700 - 2000 MHz EVB A

Component ID	Value Manufacturer Recommended Part N			
C0/L0	4.7 nH Coil craft 0402HP-4N7XG		0402HP-4N7XGRW	
C1/L1	1.2 pF	Murata	GJM1555C1H1R2BB01	
C2/L2	1.5 pF	Murata	GJM1555C1H1R5BB01	
R1	1.1 KΩ	Panasonic	ERJ-2RKF1101X	
C9/L8	0.5 pF	Murata	GJM1555C1HR50BB01	
C10/L9	4.3 pF Murata GJM1555C1H4R3		GJM1555C1H4R3BB01	
L11	18 nH Coil craft 0402HP-18NXGRW		0402HP-18NXGRW	
C5	100 nF TDK C1005X7R1H10		C1005X7R1H104K050BE	
C6	27 pF Murata GJM1555C1H270		GJM1555C1H270JB01D	
Q1	GaAs LNA Tagore Tech TP0310K		TP0310K	
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

11.2 2500 – 2700 MHz EVB B



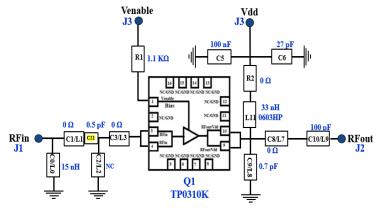

Figure 11.2 Schematic & Layout of the 2500 – 2700 MHz EVB B

Table 11.2 BOM of the 2500 – 2700 MHz EVB B

Component ID	Value Manufacturer Recommended Part Nu			
C0/L0	4.7 nH	.7 nH Coil craft 0402HP-4N7XGR\		
C1/L1, C2/L2	0.6 pF	Murata	GJM1555C1HR60BB01	
C3/L3, C8/L7 & R2	0 Ω	Panasonic	ERJ-2GE0R00X	
R1	1.1 KΩ	1.1 KΩ Panasonic ERJ-2RKF1101		
C9/L8	0.2 pF	Murata	GJM1555C1HR20BB01	
C10/L9	1.8 pF Murata GJM1555C1H1R8E		GJM1555C1H1R8BB01	
L11	18 nH Coil craft 0402HP-18NXGR\		0402HP-18NXGRW	
C5	100 nF TDK C1		C1005X7R1H104K050BE	
C6	27 pF Murata GJM1555C1H270J		GJM1555C1H270JB01D	
Q1	GaAs LNA Tagore Tech TP0310K		TP0310K	
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

11.3 3300 - 3800 MHz EVB C

An external series cut has been made between M1and M2 in the EVB board to incorporated an extra series capacitance 0.5 pF(named as C21) at the input side match.

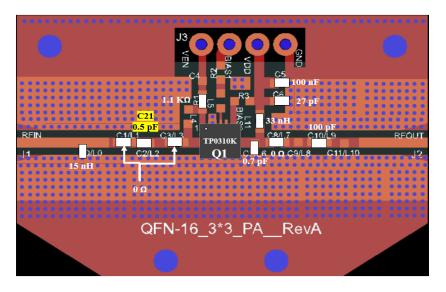


Figure 11.3 Schematic & Layout of the 3300 – 3800 MHz EVB C

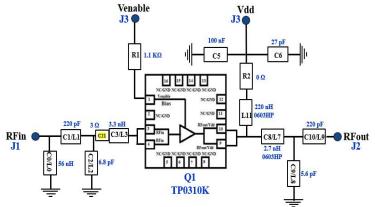
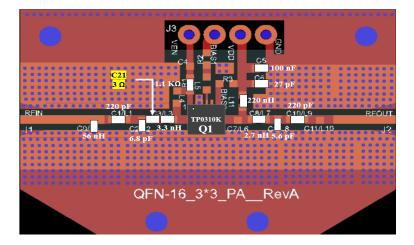
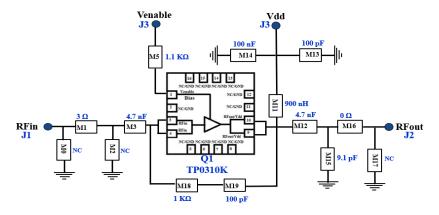

Note: An external series cut has been made between C1/L1 and C2/L2 in the EVB board to incorporate an extra series capacitance 0.5 pF (named as C21) at the input side match.

Table 11.3 BOM of the 3300 – 3800 MHz EVB C


Component ID	Value Manufacturer Recommended Part N			
C0/L0	15 nH Coil craft 0402HP-15NXC		0402HP-15NXGRW	
C21	0.5 pF	Murata	GJM1555C1HR50BB01	
C1/L1, C3/L3, C8/L7 & R2	0 Ω	Panasonic	ERJ-2GE0R00X	
R1	1.1 KΩ	Panasonic	ERJ-2RKF1101X	
C7/L6	0.7 pF	Murata	GJM1555C1HR70BB01	
C10/L9	100 pF AVX 04025A10		04025A101JAT4A	
L11	33 nH Coil craft 0402HP-33NXG		0402HP-33NXGRW	
C5	100 nF	TDK	C1005X7R1H104K050BE	
C6	27 pF Murata		GJM1555C1H270JB01D	
Q1	GaAs LNA Tagore Tech TP0310K		TP0310K	
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

11.4 130 – 950 MHz EVB D

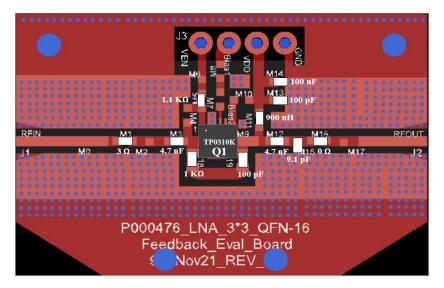
An external series cut has been made between M2 and M3 in the EVB board to incorporated an extra series resistance (named as C21) at the input side match.


Figure 11.4 Schematic & Layout of the 130 – 950 MHz EVB D

Note: An external series cut has been made between C3/L3 and C2/L2 in the EVB board to incorporate an extra series resistance 3 ohm (named as R14) at the input side match.

Component ID	Value	Manufacturer	Recommended Part Number	
C0/L0	56 nH	Coil craft	0402HPH-56NXGLU	
C1/L1, C10/L9	220 pF	Murata	GRM0335C1H221FA01D	
C2	6.8 pF	Murata	GJM1555C1H6R8BB01D	
R14	3 Ω	Panasonic	ERJ-U02F3R00X	
C3/L3	3.3 nH	Coil craft	0402HP-3N3XGLU	
R1	1.1 kΩ	Panasonic	ERJ-2RKF1101X	
C5	100 nF	TDK	C1005X7R1H104K050BE	
C6	27 pF Murata GJM1555C1		GJM1555C1H270JB01D	
L11	220 nH Coil craft 0402HPH-R22		0402HPH-R22XGLU	
C8/L7	2.7 nH Coil craft 0402HP-2		0402HP-2N7XGLU	
C9/L8	5.6 pF	Murata	GJM1555C1H5R6BB01D	
Q1	GaAs Power LNA Tagore Tech TP0310K		TP0310K	
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

11.5 30 - 525 MHz EVB E



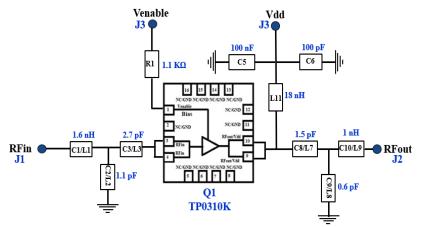

Figure 11.5 Schematic & Layout of the 30 – 525 MHz EVB E

Table 11.5 BOM of the 30 – 525 MHz EVB E

Component ID	Value Manufacturer Recommended Part			
M1	3 Ω	3 Ω Panasonic ERJ-U02F3		
M3, M12	4.7 nF	Murata	GRM1885C1H472JA01D	
M5	1.1 KΩ	Panasonic	ERJ-2RKF1101X	
M11	900 nH	Coil craft	1008AF-901XJLC	
M13, M19	100 pF	AVX	04025A101JAT4A	
M14	100 nF TDK C1005X7R1H		C1005X7R1H104K050BE	
M15	9.1 pF Murata GJM1555C1H9R1E		GJM1555C1H9R1BB01	
M16	0 Ω Panasonic ERJ-2GE0R0		ERJ-2GE0R00X	
M18	1.0 KΩ	0 KΩ Panasonic ERJ-2RKF100		
Q1	GaAs Power LNA Tagore Tech TP0310K		TP0310K	
PCB	Rogers RO4350B, 20 mils, 1 oz copper			

11.6 2900 - 3500 MHz EVB F

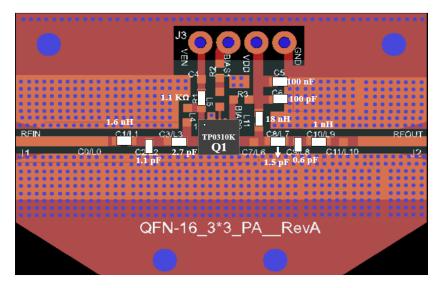


Figure 11.6 Schematic & Layout of the 2900 – 3500 MHz EVB F

Table 11.6 BOM of the 2900 – 3500 MHz EVB F

Component ID	Value	Manufacturer	Recommended Part Number
L1	1.6 nH Coil craft 0603HC-1Ne		0603HC-1N6XJRW
C2	1.1 pF	AVX	600S1R1BT250XT
C3	2.7 pF	AVX	600S2R7BT250XT
R1	1.1 KΩ	Panasonic	ERJ-2RKF1111X
C5	100 nF	TDK	C1005X7R1H104K050BE
C6	100 pF	AVX	04025A101JAT4A
C8	1.5 pF	AVX 600S1R5BT250XT	
C9	0.6 pF AVX 600S0R6BT250>		600S0R6BT250XT
L9	1 nH Coil craft 0402HP-1N0XJF		0402HP-1N0XJRW
L11	18 nH	Coil craft	0402HP-18NXGRW
Q1	GaAs Power LNA	Tagore Tech	TP0310K
PCB	Rogers RO4350B, 20 mils, 1 oz copper		

12.0 Test Procedures

「agoreTech

DISRUPTING SWAR

Biasing Sequence

To properly bias the TP0310K-EVB-A, follow these steps: Connect the supply Ground the Ground test point.

- Apply bias to the Venable=5 V test points.
- Apply bias to the Vdd=5 V test point.
- Apply an RF input signal.

The TP0310K-EVB-A is shipped fully assembled and tested. Figure 12.1 illustrates a basic test setup diagram for evaluating s-parameters, which includes gain, input output return loss and reverse isolation using a network analyzer. Follow these steps to complete the test setup and verify the operation of the TP0310K-EVB-A

- 1. Connect the Ground test point to the ground terminal of the power supply.
- 2. Connect the Venable and Vdd test points to the voltage output terminal of a 5 V supply that sources a current of approximately 140 mA.
- 3. Connect a calibrated network analyzer to the RF-in, and RF-out SMA connectors. Sweep the frequency from 1 GHz to 6 GHz and set the power to -25 dBm.

The TP0310K-EVB-A is expected to have a gain of 16.5 dB at 1.8 GHz. Refer to Table 9.1 for the expected results.

Additional test equipment is required for a comprehensive evaluation of the device's functions and performance.

For noise figure evaluation, use either a noise figure analyzer or a spectrum analyzer with a noise option. It is recommended to use a low excess noise ratio (ENR) noise source.

For third-order intercept point evaluation, use two signal generators and a spectrum analyzer. A high isolation power combiner is recommended.

For power compression and power handling evaluations, use a two-channel power meter and a signal generator. Ensure that the input power amplifier has sufficient power capacity. Test accessories such as couplers and attenuators must also have adequate power handling capabilities.

Please note that measurements conducted at the SMA connectors of the TP0310K-EVB-A include the losses of the SMA connectors and the PCB. The through line should be measured to calibrate the effects of the TP0310K-EVB-A. The through line consists of an RF input line and an RF output line that are connected to the device and have equal lengths.

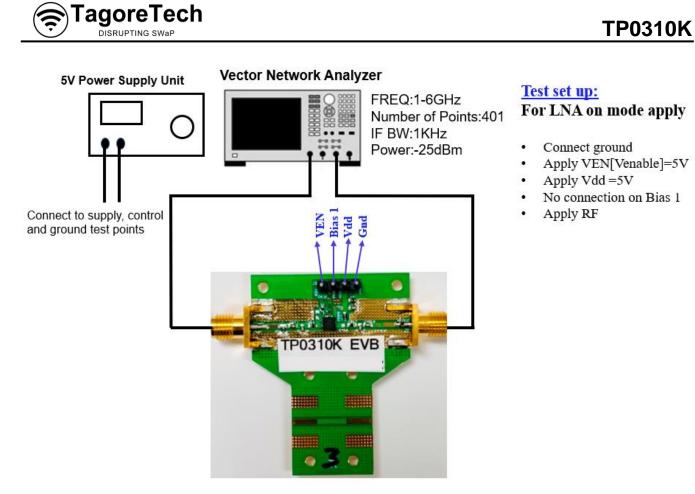
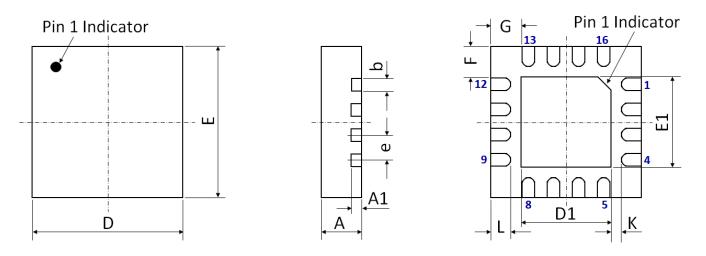



Figure 12.1 TEST Set Up Diagram

13.0 Device Package Information

Figure 13.1 Device Package Drawing (All dimensions are in mm)

Table 13.1 Device Package Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
A	0.80	±0.05	E	3.00 BSC	±0.05
A1	0.203	±0.02	E1	1.70	±0.05
b	0.25	+0.05/-0.07	F	0.625	±0.05
D	3.00 BSC	±0.05	G	0.625	±0.05
D1	1.70	±0.05	L	0.25	±0.05
е	0.50 BSC	±0.05	K	0.40	±0.05

Note: Lead finish: Pure Sn without underlayer; Thickness: 7.5 μ m ~ 20 μ m (Typical 10 μ m ~ 12 μ m)

Attention:

Please refer to application notes *TN-001* and *TN-002* at http://www.tagoretech.com for PCB and soldering related guidelines.

14.0 PCB Land Design

Guidelines:

- [1] 2-layer PCB is recommended.
- [2] Via diameter is recommended to be 0.3 mm to prevent solder wicking inside the vias.
- [3] Thermal vias shall only be placed on the center pad and should be filled/plugged with solder or copper.
- [4] The maximum via number for the center pad is 3(X)×3(Y)=9

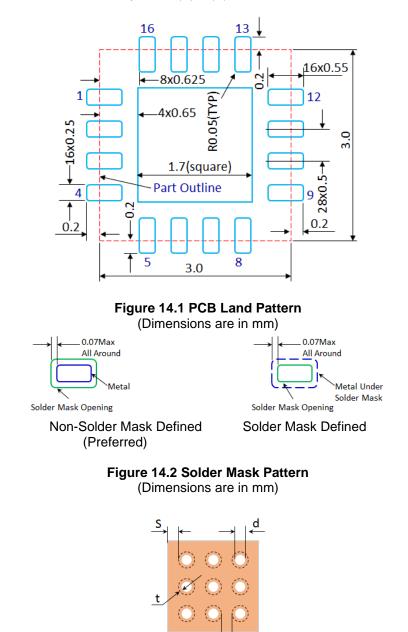


Figure 14.3 Thermal Via Pattern

(Recommended Values: S≥0.15 mm; Y≥0.20 mm; d=0.3 mm; Plating Thickness t=25 µm or 50 µm)

15.0 PCB Stencil Design

Guidelines:

- [1] Laser-cut, stainless steel stencil is recommended with electro-polished trapezoidal walls to improve the paste release.
- [2] Stencil thickness is recommended to be 125 $\mu m.$

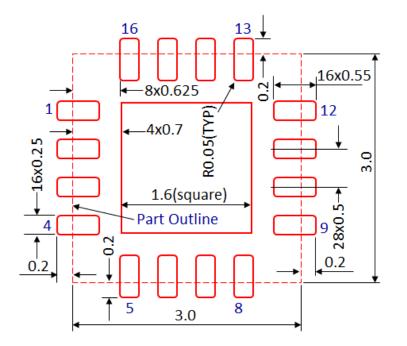


Figure 15.1 Stencil Openings (Dimensions are in mm)

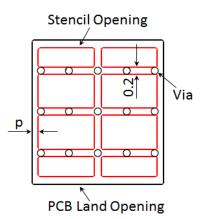
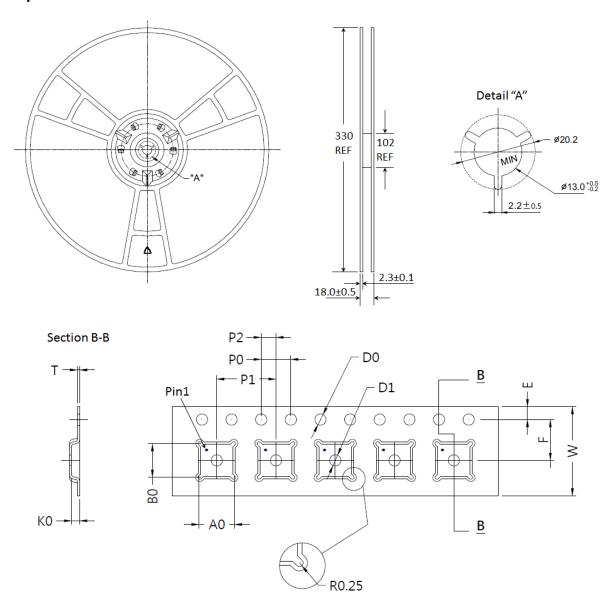



Figure 15.2 Stencil Openings Shall not Cover Via Areas If Possible (Dimensions are in mm)

16.0 Tape and Reel Information

TagoreTech

Figure 16.	1 Tape and	Reel Drawing
------------	------------	---------------------

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
A0	3.35	±0.10	K0	1.10	±0.10
B0	3.35	±0.10	P0	4.00	±0.10
D0	1.50	+0.10/-0.00	P1	8.00	±0.10
D1	1.50	+0.10/-0.00	P2	2.00	±0.05
E	1.75	±0.10	Т	0.30	±0.05
F	5.50	±0.05	W	12.00	±0.30

Table 16.1 Tape and Reel Dimensions

Edition Revision 2.7 - 2024-07-30

Published by

Tagore Tech Inc.

601 W Campus Dr. Ste C1

Arlington Heights, IL 60004, USA

©2024 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Tech assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Tech. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Tech: support@tagoretech.com.