

TR0329M

2.0-4.2 GHz GaAs Ultra Low Noise 2 Stage Bypassed LNA

Application Note: TR0329M EVB B

Application Note 2300 MHz~2700 MHz 5.0 V, 90 mA-HG mode 5.0 V, 45 mA-LG mode

Rev-2.1

Revision 2.1, 2024-07-30

List of Contents

1	General Description
2	TR0329M-EVB-B Board Details
3	TR0329M -EVB-B Bill of Material
4	TR0329M -EVB-B Biasing sequence
5	TR0329M -EVB-B Board Measurement Summary
6	TR0329M -EVB-B Board Measurement Results

1. General Description

The TR0329M is a high-linearity, ultra-low noise 2-stage gain block amplifier module with internal 50ohm input output matching with a bypass mode functionality integrated to the second stage in the product. At 3.6 GHz, the amplifier, under high gain mode, typically provides 34 dB gain, +35 dBm OIP3, and 0.5 dB noise figure while drawing 90 mA current from a +5 V supply. The component also provides high performance in the low gain mode with 15 dB gain, 0.5 dB noise figure and +22 dBm OIP3 while drawing 50 mA current. The TR0329M is packaged in a compact, low-cost Quad Flat No Lead (QFN) 3.5 x 3.5 x 0.75 mm, 20 pin plastic packages.

TR0329M-EVB-B is an evaluation board specially tuned for frequency range of 2300 MHz~2700 MHz applications. Its application in the areas of Wireless infrastructure, TDD massive multiple input & multiple output, active antenna systems, TDD-based communication systems etc.

2. TR0329M-EVB-B Board Details

Figure 2.1 TR0329M-EVB-B 2300 MHz ~ 2700 MHz Schematic and EVB Layout

3. TR0329M-EVB-B Bill of Materials

Component ID	Value	Manufacturer	Recommended Part Number	Qty
R1, R2	0 Ω	Panasonic	ERJ-2GE0R00X	2
C7	6.8 pF	Murata	GJM1555C1H6R8BB01D	1
M2, M1	220 pF	Kemet	C0402C221K5GACAUTO	2
C2, C5, C9, C10	100 pF	AVX	04025A101JAT4A	4
C1, C4, C8, C11	100 nF	TDK	C1005X7R1H104K050BE	4
C3, C6	1.5 nF	Murata	04025C152JAT2A	2
R4	15 Ω	Panasonic	ERJ-H2RD15R0X	1
R3	150 Ω	Panasonic	ERJ-2RHD1500X	1
L1, L2	8.2 nH	Coil craft / Wurth Electronics	0402HP-8N2XGE / 744916082	2
PCB	Rogers RO4350B, 20 mils, 1 oz copper			1

Table 3.1 TR0329M-EVB-B BOM

4. TR0329M-EVB-B Biasing Sequence

Turn ON Device	Turn OFF Device		
 Apply bias to the VDD1 and VDD2=5 V test points. Apply bias to the BP test points. Apply bias to the PD test point. Apply an RF input signal. 	 Turn RF power off. Turn off VDD1 and VDD2=5 V test points. Turn off BP and PD 		

Table 4.1 TR0329M-EVB-B Bias and Sequencing

5. TR0329M-EVB-B Board Measurement Summary

Parameter	Test Condition	Typical Values	Unit
Operational frequency Range		2.3-2.7	GHz
Cain	HG	37-36.8	dB
Gain	LG	18-16.7	dB
Noise Figure (De embedded)	HG	0.5-0.6	dB
Noise Figure (De-embedded)	LG	0.5-0.6	dB
EV/B Naisa Figura	HG	0.6-0.7	dB
EVB Noise Figure	LG	0.6-0.7	dB
Input Poturn Loop	HG	Less than -11	dB
	LG	Less than -11	dB
Output Datura Laga	HG	Less than -11	dB
	LG	Less than –5.5	dB
	HG	17-18.5	dBm
OPTUB	LG	10-12	dBm
OID2 (With 1MHz topo oppoing)	0 dBm per tone,	30-31	dBm
OIPS (WITH INITZ tone spacing)	-2 dBm per tone,	21-23	dBm
	HG	90	mA
Current, Id	LG	45	
	PD	5	
Isolation between RFIN and RF-out	At 2.5 GHz Receive operation	55	dB
PD mode ON and Bypass ON			
Isolation between RFIN and RF-out PD mode ON and High Gain ON		50	dB

Table 5.1 TR0329M-EVB-B Electrical Characteristics Summary

Application Note: TR0329M EVB B

6. TR0329M-EVB-B Test Results

All the tests are carried out at room temperature.

6.1. S parameters

Figure 6.1.1. S parameters of HG mode of TR0329M-EVB-B

Figure 6.1.2 S parameters of LG mode of TR0329M-EVB-B

6.2. De-embedded Noise Figure

Figure 6.2.1 De-embedded NF of HG mode of of TR0329M-EVB-B

Figure 6.3.1. Gain Vs Pout of HG mode of TR0329M-EVB-B

Figure 6.3.3. Gain compression Vs Pout of HG mode of TR0329M-EVB-B

Figure 6.2.2 De-embedded NF of LG mode of TR0329M-EVB-B

Figure 6.3.2. Gain Vs Pout of LG mode of TR0329M-EVB-B

Figure 6.3.4. Gain compression Vs Pout of LG mode of TR0329M-EVB-B

Figure 6.3.5. OIP3 Vs Pout per tone of HG mode of TR0329M-EVB-B

Figure 6.3.6. OIP3 Vs Pout per tone of LG mode of TR0329M-EVB-B

Edition Revision 2.1 - 2024-07-30

Published by

Tagore Tech Inc.

601 W Campus Dr. Ste C1

Arlington Heights, IL 60004, USA

©2024 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Tech assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Tech. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Tech: support@tagoretech.com.