

TS86436P - SP4T 200W Average Power Switch 30 MHz to 1.3 GHz

1.0 Features

- Low insertion loss: 0.09dB @ 30 MHz
- High isolation: 70 dB @ 30 MHz, 36 dB @ 1 GHz
- 200W CW Power
- No external DC blocking capacitors on RF lines
- All RF ports OFF state
- Versatile 2.6-5.25V power supply
- Operating frequency: 30 MHz to 1320 MHz

Figure 1 Device Image (48 Pin 7×7×0.85mm QFN Package)

2.0 Applications

Private mobile and military radios
Public safety handsets
Cellular infrastructure
LTE relays and microcells
Satellite terminals

3.0 Description

The TS86436P is a 2nd Generation symmetrical reflective Single Pole Dual Throw (SP4T) switch designed for high power switching applications. The TS86436P covers 30MHz to 1000MHz bandwidth and provides low insertion loss, high isolation, and high linearity within a small package size. The TS86436P is a 200W-CW switch suitable for applications requiring low insertion loss, high isolation, and high linearity.

The TS86436P is packaged into a compact Quad Flat No lead (QFN) 7x7mm 48 leads plastic package.

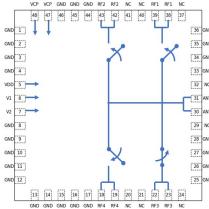


Figure 2 Function Block Diagram (Top View)

4.0 Ordering Information

Table 1a Ordering Information

Device Part Number	Package Type	Eval Board Part Number
TS86436P	48 Pin 7×7×0.85mm QFN	TS86436P-EVB

Table 1b Tape and Reel Information

Form	Quantity	Reel Diameter	Reel Width
Tape and Reel	3,000	13" (330mm)	18mm

5.0 Pin Description

Table 2 Pin Definition

Pin Number	Pin Name	Description
47,48	VCP	Short PIN 47 and 48 and connect a 1nF capacitor to GND on this node to improve switching time.
5	VDD	DC power supply
6	V1	Switch control input 1
7	V2	Switch control input 2
1,2,3,4,8,9,10,11,12,13,14,15,16,17,18,19,20, 25,26,27,28, 33,34,35,36,41,42,43,44,45,46	NC	No internal connection, can be grounded
21,24,29,32,37,40	NC	No internal connection. Do not connect to ground
38,39	RF1	RF port 1
42,43	RF2	RF port 2
22,23	RF3	RF port 3
18,19	RF4	RF port 4
30,31	ANT	Antenna port
49	GND	Ground thermal pad

Note: The backside ground (thermal) pad of the package must be grounded directly to the ground plane of PCB with multiple vias, and adequate heat sinking must be used to ensure proper operation and thermal management.

6.0 Absolute Maximum Ratings

Table 3 Absolute Maximum Ratings @T_A=+25°C Unless Otherwise Specified

Parameter	Symbol	Value	Unit			
Electrical Ratings						
Power Supply Voltage	VDD	5.5	V			
Storage Temperature Range	T _{st}	-55 to +125	°C			
Operating Temperature Range	Top	-40 to +85	°C			
Maximum Junction Temperature	TJ	+140	ů			
Maximum RF input power(30MHz).	RFx/ANT	54.0	dBm			
Maximum RF input power(500MHz).	RFx/ANT	54.5	dBm			

Manipular DE insult a cours (20MHz, VC)MD 0:4)	DE/ANT	TDD	dD			
Maximum RF input power (30MHz, VSWR 8:1).	RFx/ANT	TBD	dBm			
Maximum RF input Peak Voltage (30MHz, VSWR 8:1).	RFx/ANT	160	V			
Thermal Rati	ngs					
Thermal Resistance (junction-to-case) – Bottom side	Rejc	2.5	°C/W			
Thermal Resistance (junction-to-top)	Rejt	30	°C/W			
Soldering Temperature	Tsold	260	°C			
ESD Ratings						
Human Body Model (HBM)	Level 1B	500 to <1000	٧			
Charged Device Model (CDM)	Level C3	≥1000	V			
Moisture Rating						
Moisture Sensitivity Level	MSL	1	-			

Attention:

Maximum ratings are absolute ratings. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding one or a combination of the absolute maximum ratings may cause permanent and irreversible damage to the device and/or to surrounding circuit.

7.0 Electrical Specifications

Table 4 Electrical Specifications @ T_A =+25°C Unless Otherwise Specified; VDD=+3.3V; 50 Ω Source/Load.

Parameter	Condition	Minimum	Typical	Maximum	Unit	
Operating frequency		30		1320	MHz	
	30 MHz		0.08	0.11		
	200 MHz		0.13	0.17		
Insertion loss, RFx	800 MHz (Matched)		0.34		dB	
	1200 MHz (Matched)		0.39			
	1300 MHz (Matched)		0.45			
	30 MHz		70			
	200 MHz		53]	
Isolation ANT-RFx	800 MHz (Matched)		41		dB	
ISUIALIUH AINT-REX	1200 MHz (Matched)		33]	
	1300 MHz (Matched)		33		1	
	30 MHz		39			
	200 MHz		25		1	
Return loss ANT, RFx	800 MHz (Matched)		18		dB	
NFX .	1200 MHz (Matched)		20			
	1300 MHz (Matched)		15		1	
Harmonic distortion						
H2	30MHz, Pin=50dBm		88		dBc	
H3	30MHz, Pin=50dBm		91		dBc	
H2	800MHz, Pin=50dBm		75		dBc	
H3	800MHz, Pin=50dBm		83		dBc	
P0.1dB ^[1]	30MHz, CW		54		dBm	
P0.1dB ^[1]	500MHz, CW		54		dBm	
Peak P0.1dB ^[1]	30MHz, 1% duty cycle, 1 ms period		55.5		dBm	
CP switching Noise	RBW = 1KHz		-140		dBm	
Switching time	50% ctrl to 10/90% of the RF value is settled. CP=1nF to ground on VCP pin.		52	68	μS	
Control voltage	Power Supply VDD	2.6	3.3	5.25	V	
	All control pins high, V _{ih}	1.0	3.3	5.25	V	
	All control pins low, V _{il}	-0.3		0.5	V	
Control current	All control pins low, Iii		0		μΑ	
	All control pins high, I _{ih}			7.5	μA	
Current consumption, IDD	Active mode (VDD on)		160	260	μ A	

Note:

[2] No external DC blocking capacitors required on RF pins unless DC voltage is applied on a RF pin.

^[1] P0.1dB is a figure of merit.

8.0 Switch Truth Table

Table 5. Switch Truth Table

V1	V2	Active RF Path		
0	0	ANT-RF1 ON		
1	0	ANT-RF2 ON		
0	1	ANT-RF3 ON		
1	1	ANT-RF4 ON		

Attention:

- [1] VDD should be applied first before V1 and V2, otherwise may cause damage to the device.
- [2] There are internal pull-downs to ground on both V1 and V2 control pins, the state at start-up without any control voltage applied will be ANT-RF1 ON.

9.0 Schematic and Evaluation Board

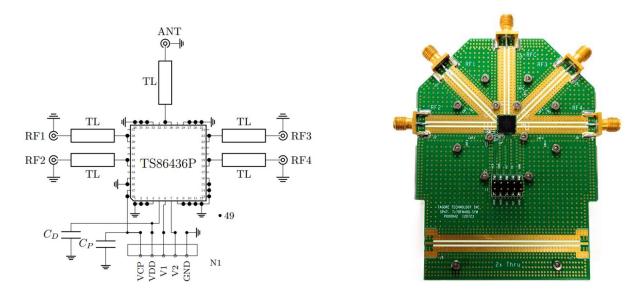


Figure 3 Evaluation Board and Schematic.

Attention:

[1] 49 refers to the center pad of the device. Multiple Plugged through hole vias should be added on this ground pad and adequate heat sinking should be used.

[2] The purpose of connection between VCP and connector N1 is to monitor VCP, do not apply external voltage to VCP.

10.0 Typical Characteristics – Unmatched (<500 MHz)

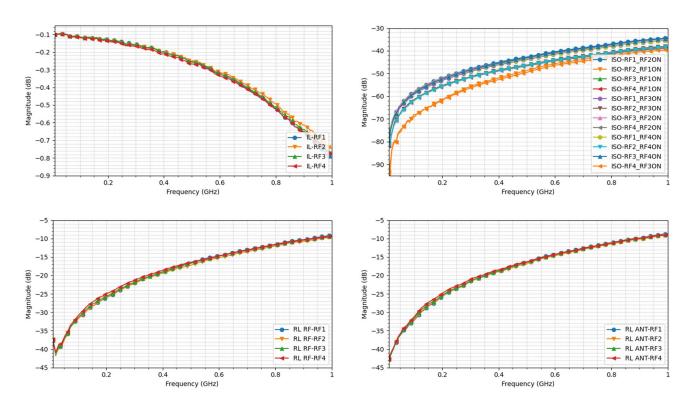


Figure 4a Typical characteristics

10.1 Typical Characteristics – Matched (760 MHz – 870 MHz)

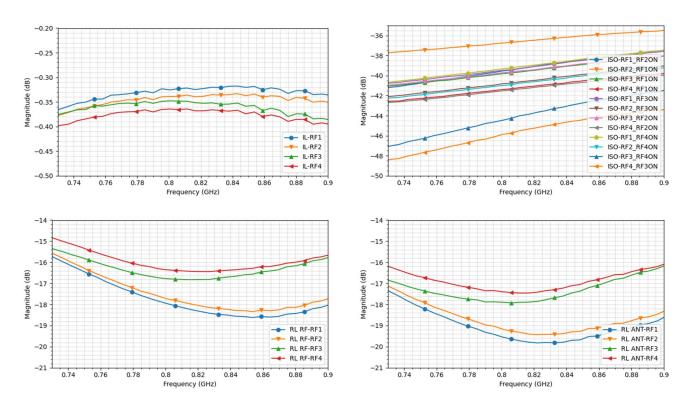


Figure 4b Typical characteristics (760 MHz – 870 MHz)

10.2 Typical Characteristics – Matched (1100 MHz – 1200 MHz)

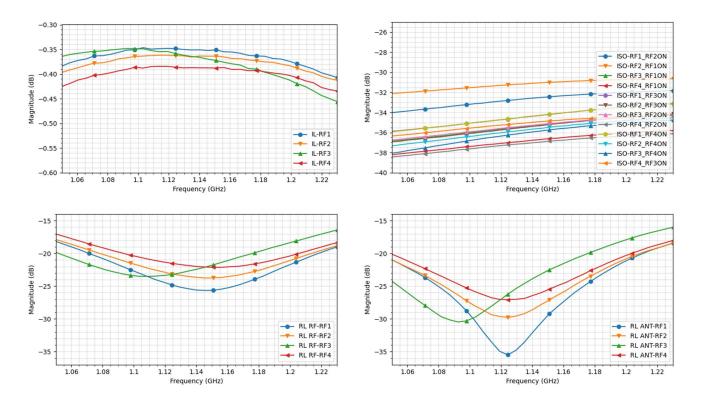


Figure 4c Typical characteristics (1100 MHz – 1200 MHz)

10.3 Typical Characteristics - Matched (1200 MHz - 1320 MHz)

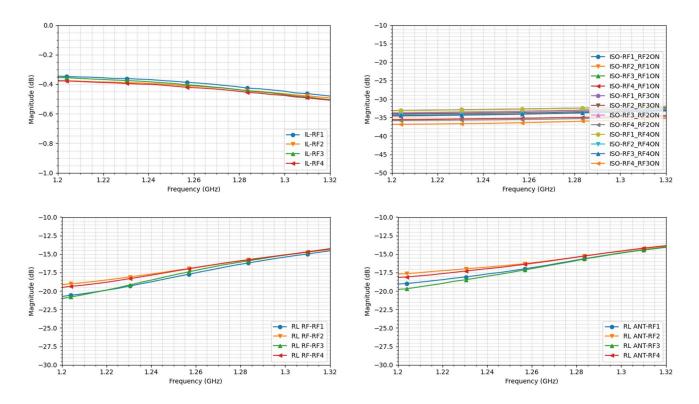


Figure 4d Typical characteristics (1200 MHz – 1320 MHz)

Table 6.1 Bill of Materials - Matching* (<500 MHz)

Component	Part Number	Description	Notes
C _P	GRM155R61E104KA87D	Ceramic capacitor, 0.1 µF, 25 V, ±10%.	
C _D	GRM155R71H103KA88	Ceramic capacitor, 10 nF, 50 V, ±15%.	

^{*} For additional details, please contact the Tagore Technology support team.

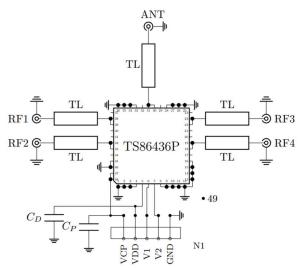


Figure 5a. Unmatched circuit schematic.

Table 6.2 Bill of Materials – Matching* (760 MHz – 870 MHz)

Component	Part Number	Description	Notes
C _P	GRM155R61E104KA87D	Ceramic capacitor, 0.1 µF, 25 V, ±10%.	
C _D	GRM155R71H103KA88	Ceramic capacitor, 10 nF, 50 V, ±15%.	
L _{1a}	0908SQ-12N_L_	Air core chip inductor, 12.1 nH, ± 5%.	
L _{2a}	0908SQ-12N_L_	Air core chip inductor, 12.1 nH, ± 5%.	
L _{3a}	0908SQ-12N_L_	Air core chip inductor, 12.1 nH, ± 5%.	
L _{4a}	0908SQ-12N_L_	Air core chip inductor, 12.1 nH, ± 5%.	
T _{1a}	1 mm	PCB transmission line length.	From the IC-reference plane.
T _{2a}	1 mm	PCB transmission line length.	From the IC-reference plane.
T _{3a}	1 mm	PCB transmission line length.	From the IC-reference plane.
T _{4a}	1 mm	PCB transmission line length.	From the IC-reference plane.

^{*} For additional details, please contact the Tagore Technology support team.

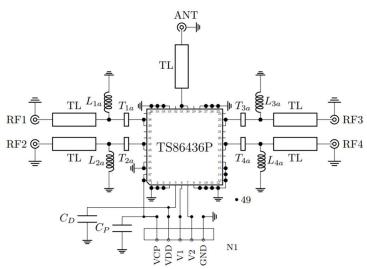


Figure 5b. 760 MHz – 870 MHz circuit schematic.

Table 6.3 Bill of Materials – Matching* (1100 MHz – 1200 MHz)

Component	Part Number	Description	Notes
C _P	GRM155R61E104KA87D	Ceramic capacitor, 0.1 µF, 25 V, ±10%.	
C _D	GRM155R71H103KA88	Ceramic capacitor, 10 nF, 50 V, ±15%.	
C _{1a}	0603N100JW251	Ceramic capacitor, 10 pF, 250 V, ±5%.	
C_{2a}	0603N100JW251	Ceramic capacitor, 10 pF, 250 V, ±5%.	
C _{3a}	0603N100JW251	Ceramic capacitor, 10 pF, 250 V, ±5%.	
C _{4a}	0603N100JW251	Ceramic capacitor, 10 pF, 250 V, ±5%.	
L _{1a}	0806SQ-6N0_L_	Air core chip inductor, 6.0 nH, ± 5%.	
L _{2a}	0806SQ-6N0_L_	Air core chip inductor, 6.0 nH, ± 5%.	
L _{3a}	0806SQ-6N0_L_	Air core chip inductor, 6.0 nH, ± 5%.	
L _{4a}	0806SQ-6N0_L_	Air core chip inductor, 6.0 nH, ± 5%.	
T _{1a}	1 mm	PCB transmission line length.	From the IC-reference plane.
T _{2a}	1 mm	PCB transmission line length.	From the IC-reference plane.
T _{3a}	1 mm	PCB transmission line length.	From the IC-reference plane.
T _{4a}	1 mm	PCB transmission line length.	From the IC-reference plane.

^{*} For additional details, please contact the Tagore Technology support team.

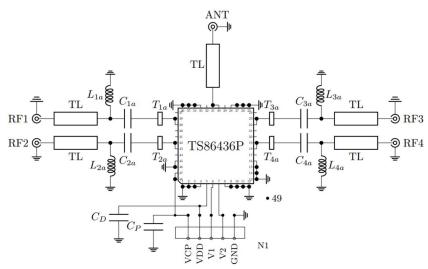


Figure 5c. 1100 MHz – 1200 MHz circuit schematic.

Table 6.4 Bill of Materials – Matching* (1200 MHz – 1320 MHz)

Component	Part Number	Description	Notes			
C _P	GRM155R61E104KA87D	Ceramic capacitor, 0.1 µF, 25 V, ±10%.				
C _D	GRM155R71H103KA88	Ceramic capacitor, 10 nF, 50 V, ±15%.				
C _{0a}	0603N100JW251	Ceramic capacitor, 10 pF, 250 V, ±5%.				
L _{0a}	A02T_L_	Mini Spring Air Core Inductor, 5.0 nH, ± 5%.				
T _{0a}	1 mm	PCB transmission line length.	From the IC-reference plane.			
T _{0b}	0.5 mm	PCB transmission line length.				

^{*} For additional details, please contact the Tagore Technology support team.

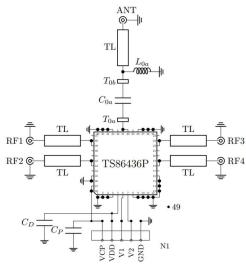


Figure 5d. 1200 MHz – 1320 MHz circuit schematic.

11.0 Device Package Information

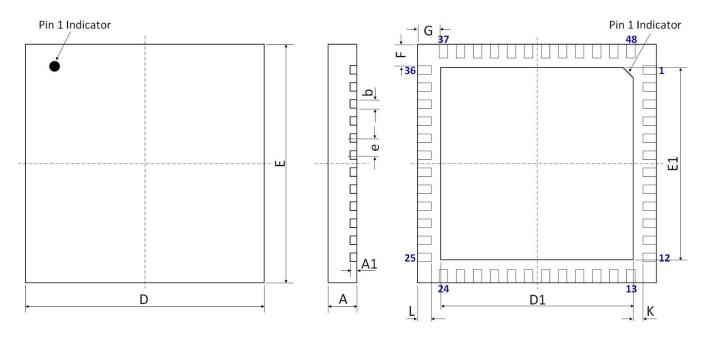


Figure 6 Device Package Drawing

(All dimensions are in mm)

Table 7 Device Package Dimensions

Dimension	Value (mm)	Tolerance (mm)	Dimension	Value (mm)	Tolerance (mm)
Α	0.85	±0.05	E	7.00 BSC	±0.05
A1	0.203	±0.02	E1	5.65	±0.06
b	0.25	+0.05/-0.07	F	0.625	±0.05
D	7.00 BSC	±0.05	G	0.625	±0.05
D1	5.65	±0.06	L	0.40	±0.05
е	0.50 BSC	±0.05	K	0.275	±0.05

Note: Lead finish: Pure Sn without underlayer; Thickness: 7.5μm ~ 20μm (Typical 10μm ~ 12μm)

Attention:

Please refer to application notes *TN-001* and *TN-002* at http://www.tagoretech.com for PCB and soldering related guidelines.

Top Marking Specifications:

TTSW
TSXXXXXX
EYYWW

= Pin 1 indicator

TTSW = Tagore Technology SWitch

TSXXXXXX = Part number (8 digits max)

E = A fixed letter before the date code

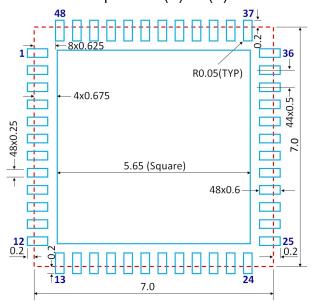
YY = Last two digits of assembly year

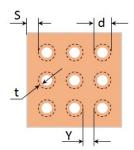
WW = Assembly work week

12.0 PCB Land Design

Guidelines:

- [1] 4-layer PCB is recommended.
- [2] Via diameter is recommended to be 0.3mm to prevent solder wicking inside the vias.
- [3] Thermal vias shall only be placed on the center pad.
- [4] The maximum via number for the center pad is $11(X)\times11(Y)=121$.




Figure 7 PCB Land Pattern

(Dimensions are in mm)

Figure 8 Solder Mask Pattern

(Dimensions are in mm)

Figure 9 Thermal Via Pattern

(Recommended Values: S≥0.15mm; Y≥0.20mm; d=0.3mm; Plating Thickness t=25µm or 50µm)

13.0 PCB Stencil Design

Guidelines:

- [1] Laser-cut, stainless steel stencil is recommended with electro-polished trapezoidal walls to improve the paste release.
- [2] Stencil thickness is recommended to be 125µm.

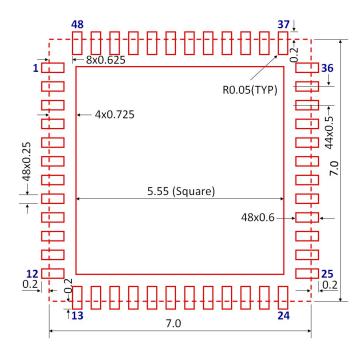


Figure 10 Stencil Openings (Dimensions are in mm)

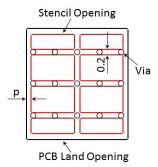
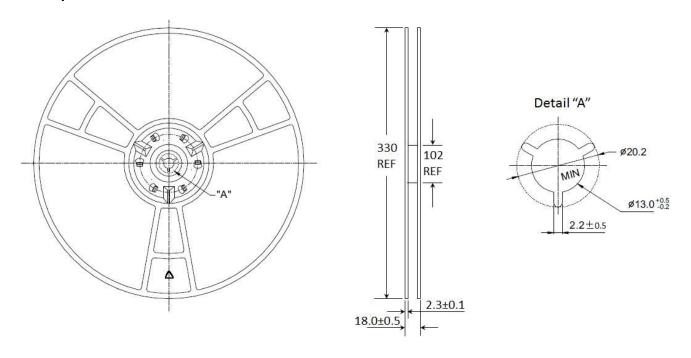



Figure 11 Stencil Openings Shall not Cover Via Areas If Possible (Dimensions are in mm)

14.0 Tape and Reel Information

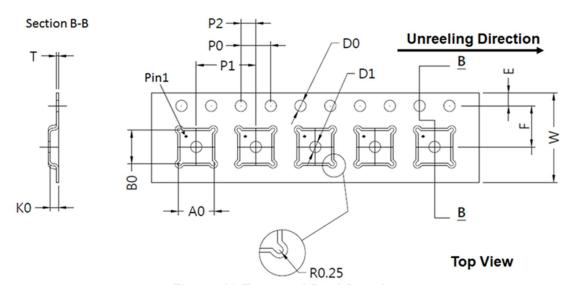


Figure 12 Tape and Reel Drawing

Table 8 Tape and Reel Dimensions

Dimension	Value (mm)	Tolerance (mm)	Dimension	Value (mm)	Tolerance (mm)
A0	7.35	±0.10	K0	1.10	±0.10
В0	7.35	±0.10	P0	4.00	±0.10
D0	1.50	+0.10/-0.00	P1	8.00	±0.10
D1	1.50	+0.10/-0.00	P2	2.00	±0.05
E	1.75	±0.10	Т	0.30	±0.05
F	5.50	±0.05	W	12.00	±0.30

Edition Revision 2.0- 2024-09-10

Published by

TagoreTech Inc. 601 Campus Drive, Suite C1 Arlington Heights, IL 60004, USA

©2018 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. TagoreTech assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of TagoreTech. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact TagoreTech: support@tagoretech.com.