

TSL8329M

2.0-4.2 GHz GaAs plus GaN Dual channel

20-Watt Receiver Front End

Application Note: TSL8329M EVB B

Application Note

2900 MHz~3300 MHz

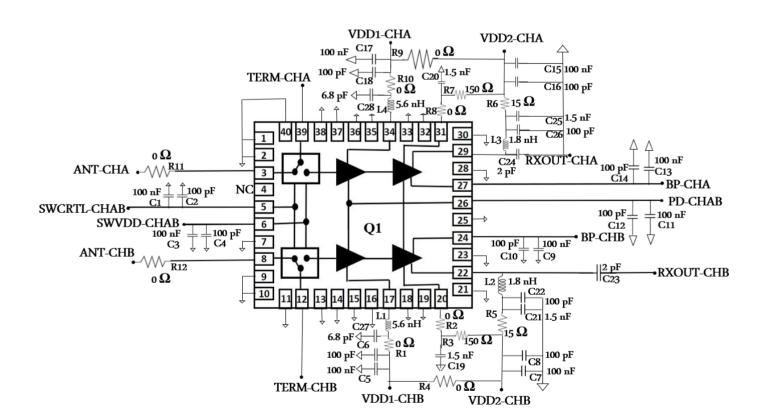
5.0 V 90 mA-HG mode

5.0 V 45 mA-LG mode

Rev-2.1

List of Contents

1	General Description
2	TSL8329M-EVB-B Board Details
3	TSL8329M -EVB-B Bill of Material
4	TSL8329M -EVB-B Biasing sequence
5	TSL8329M -EVB-B Board Measurement Summary
6	TSL8329M -EVB-B Board Measurement Results



1. General Description

The TSL8329M is a dual-channel, integrated RF, front-end, multichip module designed for different applications. The device operates from 2.0 GHz to 4.2 GHz. The TSL8329M is configured in dual channels with a cascading, two-stage, LNA and a high GaN based SPDT switch. In high gain mode, the cascaded two-stage LNA and switch offer a low noise figure of 1 dB and a high gain of 32 dB at 3.6 GHz with an output third-order intercept point (OIP3) of 35 dBm (typical) at high gain mode. In low gain mode, one stage of the two-stage LNA is in bypass, providing 13 dB of gain at a lower current of 45 mA. In power-down mode, the LNAs are turned off and the device draws 5 mA. In transmit operation, when RF inputs are connected to a termination pin (TERM-CHA or TERM-CHB), the switch provides low insertion loss of 0.45 dB at 3.6GHz and handles long-term evolution (LTE) average power (9 dB peak to average ratio (PAR)) of 43 dBm for full lifetime operation. The device comes in a RoHS compliant, compact, 6 mm × 6 mm, 40-Pin QFN.

TSL8329M-EVB-B is an evaluation board specially tuned for frequency range of 2900 MHz~3300 MHz applications. Its application in the areas of Wireless infrastructure, TDD massive multiple input & multiple output, active antenna systems, TDD-based communication systems etc.

2. TSL8329M-EVB-B Board Details

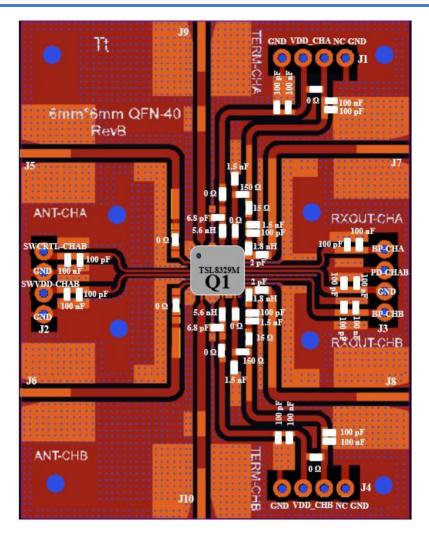


Figure 2.1 TSL8329M-EVB-B 2900 MHz ~ 3300MHz schematic and EVB layout

3. TSL8329M-EVB-B Bill of Materials

Component ID	Value	Manufacturer	Recommended Part Number	Qty
R1, R2, R4, R8, R9, R10, R11, R12	0 Ω	Panasonic	ERJ-2GE0R00X	8
R3, R7	150 Ω	Panasonic	ERJ-2RHD1500X	2
R5, R6	15 Ω	Panasonic	ERJ-H2RD15R0X	2
L2, L3	1.8 nH	Coil craft	0603HP-1N8XJLW	2
L1, L4	5.6 nH	Coil craft	0402HP-5N6XGRW	2
C27, C28	6.8 pF	Murata	GJM1555C1H6R8BB01D	2
C19, C20, C21, C25	1.5 nF	Murata	04025C152JAT2A	4
C23, C24	2 pF	Murata	GJM1555C1H2R0BB01D	2
C2, C4, C6, C8, C10, C12, C14, C16, C18, C22, C26	100 pF	AVX	04025A101JAT4A	11
C1, C3, C5, C7, C9, C11, C13, C15, C17	100 nF	TDK	C1005X7R1H104K050BE	9
Q1	GaAs LNA+ GaN Switch	TagoreTech	TSL8328M	1
PCB	Rogers RO4350B, 20 mils, 1 oz copper			1

Table 3.1 TSL8329M-EVB-B BOM

4. TSL8329M-EVB-B Biasing Sequence

Turn ON Device	Turn OFF Device
 Bias up SWVDD-CHAB= 5V test points. Bias up the SWCTRL-CHAB test point. Bias up the VDD-CHA test point. Bias up the BP-CHA test points. Bias up the PD-CHAB test point. Apply an RF input signal 	 Turn RF power off. Turn off BP and PD. Turn off VDD-CHA. Turn off SWCTRL-CHAB. Turn off SWVDD-CHAB.

Table 4.1 TSL8329M-EVB-B Bias and Sequencing

5. TSL8329M-EVB-B Board Measurement Summary

Parameter	Test Condition	Typical Values	Unit	
Operational frequency Range		2.9 G-3.3 G	Hz	
	HG	35-38	dB	
Gain	LG	14.8-13.5	dB	
Noise Figure (De-embedded)	HG	0.9-1	dB	
Noise Figure (De-embedded)	LG	0.9-1	dB	
EV/P Noise Figure	HG	1.3-1.2	dB	
EVB Noise Figure	LG	1.3-1.2	dB	
Input Return Loss	HG	Less than -9	dB	
input Return Loss	LG	Less than -9	dB	
Output Datum Laga	HG	Less than -11	dB	
Output Return Loss	LG	Less than -4	dBm	
OP1dB	HG	17-18.2	dBm	
OPTUB	LG	10-11	dBm	
OID2 (With 1 MHz tone angling)	0 dBm per tone,	30-32.5	dBm	
OIP3 (With 1 MHz tone spacing)	-2 dBm per tone,	20-25	dBm	
	HG	90	mA	
Current, Id	LG	45		
	PD	5		
Insertion Loss	Transmit operation at 3.1 GHz	0.45	dB	
Channel to Channel Isolation Between RXOUT -CHA & CHB	At 3.1 GHz Receive operation	35	dB	
Between TERM-CHA & TERM-CHB	Transmit operation	55	dB	
SWITCH ISOLATION ANT-CHA to TERM-CHA and ANT-CHB to TERM-CHB	Transmit operation, PD-CHAB = 0 V	25	dB	

Table 4.1 TSL8329M-EVB-B Electrical Characteristics Summary

6. TSL8329M-EVB-B Test Results

All the tests are carried out at room temperature.

6.1. S parameters

Figure 5.1.1. S parameters of HG mode of TSL8329M-EVB-B

Figure 5.1.2 S parameters of LG mode of TSL8329M-EVB-B

6.2. De-embedded Noise Figure

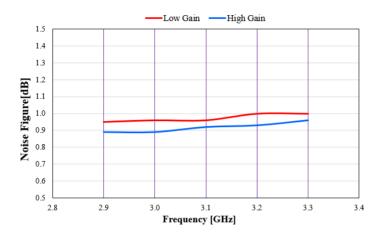
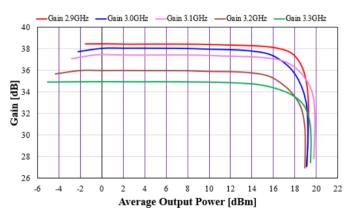
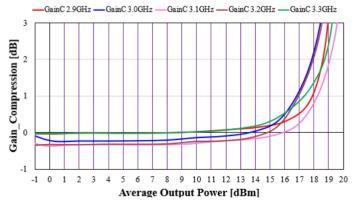



Figure 6.2.1 De-embedded NF of HG and LG mode of of TSL8329M-EVB-B

6.3. Large Signal Test Results

Gain 2.9GHz — Gain 3.0GHz — Gain 3.1GHz — Gain 3.2GHz — Gain 3.3GHz


16
15
14
13
11
11
11
11
11
12
14

Average Output Power [dBm]

Figure 6.3.1. Gain Vs Pout of HG mode of TSL8329M-EVB-B

Figure 6.3.2. Gain Vs Pout of LG mode of TSL8329M-EVB-B

GainC 2.9GHz — GainC 3.0GHz — GainC 3.1GHz — GainC 3.2GHz — GainC 3.3GHz

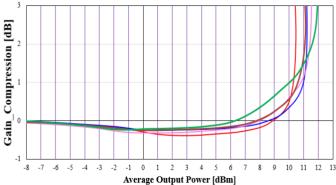
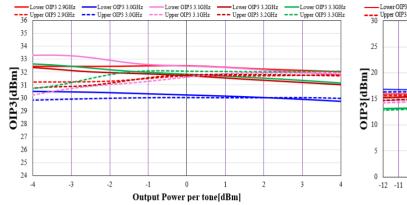



Figure 6.3.3. Gain compression Pout of HG mode of TSL8329M-EVB-B

Figure 6.3.4. Gain compression Pout of LG mode of TSL8329M-EVB-B

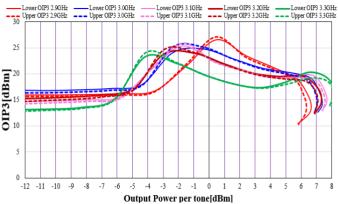


Figure 6.3.5. OIP3 Vs Pout per tone of HG mode of TSL8329M-EVB-B

Figure 6.3.6. OIP3 Vs Pout per tone of LG mode of TSL8329M-EVB-B

Edition Revision 2.1 - 2024-07-30

Published by

TagoreTech Inc.

601 W Campus Dr. Ste C1

Arlington Heights, IL 60004, USA

©2024 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. TagoreTech assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of TagoreTech. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact TagoreTech: support@tagoretech.com.